Секреты числа Пи. Почему неразрешима задача о квадратуре круга - [14]

Шрифт
Интервал

D = 0, d>1d>2d>3d>4d>5… d>n…,

которой не было в списке. Для каждого n он определил d>n, отличное от того, которое находится в строке n и столбце n.

d отличается от десятичной дроби, которая соответствует числу 1? Да, поскольку d отличается от этой дроби в первом знаке после запятой.

d отличается от десятичной дроби, которая соответствует следующему числу в списке? Да, поскольку d отличается от второй дроби во втором знаке после запятой.

d отличается от десятичной дроби, которая соответствует третьему числу в списке? Да, поскольку d отличается от третьей дроби во третьем знаке после запятой.

Это же верно и для четвертой, пятой и n-й дробей:

d>n не равно r>n

D отличается от всех десятичных дробей в списке, следовательно, оно не содержится в этом списке. Но разве мы не говорили, что в этом списке содержатся все десятичные дроби? Имеется противоречие с исходным утверждением, которое гласит, что все десятичные дроби пронумерованы и перечислены в списке. В действительности это не так. Это доказывает, что множество всех десятичных дробей не является счетным.

|

| > |
|

* * *

Существует множество иррациональных чисел, начиная с √2 и всевозможных комбинаций корней, например

, и заканчивая универсальными константами, например π. Будет логичным спросить: «Сколько всего иррациональных чисел?»

Обозначим множество всех десятичных дробей , иными словами, объединение рациональных и иррациональных чисел:



Мы знаем, что первое из этих множеств 

= {рациональные числа} счетно. Кантор доказал, что множество  не является счетным. Следовательно, множество в правой части равенства также не может быть счетным. В противном случае  было бы образовано двумя счетными множествами, следовательно, оно также должно было быть счетным.

Наконец-то мы нашли нечто неисчислимое — множество , элементы которого нельзя сосчитать. Следовательно, это бесконечное множество, бесспорно, больше всех бесконечных множеств, о которых мы говорили до этого.

Множество 

известно как множество вещественных чисел.

В простейшей теории множеств, которую сегодня изучают в школах, вышеизложенное обычно изображают с помощью диаграмм:



Множества

и
, содержащиеся в , являются счетными, в то время как 
таковым не является. Можно сказать, пусть и немного неточно, что почти все числа являются иррациональными, за исключением рациональных, образующих меньшую бесконечность, которая является счетной. Число π является иррациональным, что доказал Иоганн Генрих Ламберт (1728–1777) в 1760-е годы. Следовательно, оно принадлежит к несчетному большинству, куда также входят почти все десятичные дроби. С этой точки зрения π не является каким-то необычным. Кроме того, что оно иррационально, оно также является вещественным, как почти все остальные числа.


Алгебраические и трансцендентные числа

Ранее мы говорили об алгебраических числах. Вспомним, что

1) алгебраическими числами называются числа, которые являются корнями уравнения

а>nх>n + а>n-1х>n-1 +… + а>1х + а>0 = 0,

где а>n, а>n-1…., а>1, a>0 — рациональные числа;

2) алгебраические числа образуют счетное бесконечное множество.

Почему мы снова вспомнили о них? Причина в том, что во всех геометрических построениях используются лишь циркуль и линейка, причем конечное число раз.

Таковы своеобразные «правила игры», и таким достаточно простым способом строятся ничем не примечательные отрезки.

Тот факт, что древние греки использовали для построений только циркуль и линейку, привел к появлению особых отрезков (и, как следствие, чисел), которые, в отличие от остальных, можно построить (иногда их называют построимыми числами). Возьмем в качестве примера обычное число √2. Это число можно построить с помощью циркуля и линейки, как показано на рисунке:



Это первое иррациональное число, с которым встретились древние греки. Именно это число дало название иррациональным числам. Это число также является алгебраическим и его можно построить. Как мы уже говорили, √2 является корнем уравнения второй степени х>2 — 2 = 0.

Все числа, которые можно построить, являются алгебраическими. Рассмотрим, почему это так. Если говорить о построениях с помощью циркуля и линейки, то максимум, что мы можем построить, — это числа вида

x>1 = a>0 + b>0x>0,

где a>0, b>0 и x>0 — рациональные. Опустим доказательство этого утверждения: оно несложное, но очень громоздкое. Число является алгебраическим, так как является решением квадратного уравнения с рациональными коэффициентами, а именно

х>2 — 2а>0х + а>0>2Ь>0>2х>0 = 0.

Это уравнение с рациональными коэффициентами: числа 1, -2a>0 и -Ь>2х>0 принадлежат . Все числа, подобные x>0, образуют так называемое поле, обозначаемое К>0 и удовлетворяющее условию



Иными словами,  является подмножеством K>0 и K>0 образованы построимыми числами, но содержат только алгебраические числа. K>0 больше, чем , и включает его. Все числа K>0 являются алгебраическими, некоторые из них рациональные (те, что принадлежат ), другие — нет (те, что принадлежат K>0 и не принадлежат

).

Выберем для построения

x>2 = a>1 + b>1x>1,

где a>1, b>1 и x>1 принадлежат K>0, и тем самым образуем еще большее поле:



также образованное алгебраическими числами, которые можно построить. Очевидно, что можно сформировать любое количество полей


Еще от автора Хоакин Наварро
Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.


Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.