Секреты числа Пи. Почему неразрешима задача о квадратуре круга - [14]
D = 0, d>1d>2d>3d>4d>5… d>n…,
которой не было в списке. Для каждого n он определил d>n, отличное от того, которое находится в строке n и столбце n.
d отличается от десятичной дроби, которая соответствует числу 1? Да, поскольку d отличается от этой дроби в первом знаке после запятой.
d отличается от десятичной дроби, которая соответствует следующему числу в списке? Да, поскольку d отличается от второй дроби во втором знаке после запятой.
d отличается от десятичной дроби, которая соответствует третьему числу в списке? Да, поскольку d отличается от третьей дроби во третьем знаке после запятой.
Это же верно и для четвертой, пятой и n-й дробей:
d>n не равно r>n
D отличается от всех десятичных дробей в списке, следовательно, оно не содержится в этом списке. Но разве мы не говорили, что в этом списке содержатся все десятичные дроби? Имеется противоречие с исходным утверждением, которое гласит, что все десятичные дроби пронумерованы и перечислены в списке. В действительности это не так. Это доказывает, что множество всех десятичных дробей не является счетным.
|
| > ||* * *
Существует множество иррациональных чисел, начиная с √2 и всевозможных комбинаций корней, например
, и заканчивая универсальными константами, например π. Будет логичным спросить: «Сколько всего иррациональных чисел?»Обозначим множество всех десятичных дробей
Мы знаем, что первое из этих множеств
= {рациональные числа} счетно. Кантор доказал, что множествоНаконец-то мы нашли нечто неисчислимое — множество
Множество
известно как множество вещественных чисел.В простейшей теории множеств, которую сегодня изучают в школах, вышеизложенное обычно изображают с помощью диаграмм:
Множества
, и , содержащиеся вРанее мы говорили об алгебраических числах. Вспомним, что
1) алгебраическими числами называются числа, которые являются корнями уравнения
а>nх>n + а>n-1х>n-1 +… + а>1х + а>0 = 0,
где а>n, а>n-1…., а>1, a>0 — рациональные числа;
2) алгебраические числа образуют счетное бесконечное множество.
Почему мы снова вспомнили о них? Причина в том, что во всех геометрических построениях используются лишь циркуль и линейка, причем конечное число раз.
Таковы своеобразные «правила игры», и таким достаточно простым способом строятся ничем не примечательные отрезки.
Тот факт, что древние греки использовали для построений только циркуль и линейку, привел к появлению особых отрезков (и, как следствие, чисел), которые, в отличие от остальных, можно построить (иногда их называют построимыми числами). Возьмем в качестве примера обычное число √2. Это число можно построить с помощью циркуля и линейки, как показано на рисунке:
Это первое иррациональное число, с которым встретились древние греки. Именно это число дало название иррациональным числам. Это число также является алгебраическим и его можно построить. Как мы уже говорили, √2 является корнем уравнения второй степени х>2 — 2 = 0.
Все числа, которые можно построить, являются алгебраическими. Рассмотрим, почему это так. Если говорить о построениях с помощью циркуля и линейки, то максимум, что мы можем построить, — это числа вида
x>1 = a>0 + b>0√x>0,
где a>0, b>0 и x>0 — рациональные. Опустим доказательство этого утверждения: оно несложное, но очень громоздкое. Число является алгебраическим, так как является решением квадратного уравнения с рациональными коэффициентами, а именно
х>2 — 2а>0х + а>0>2 — Ь>0>2х>0 = 0.
Это уравнение с рациональными коэффициентами: числа 1, -2a>0 и -Ь>2х>0 принадлежат
Иными словами,
Выберем для построения
x>2 = a>1 + b>1√x>1,
где a>1, b>1 и x>1 принадлежат K>0, и тем самым образуем еще большее поле:
также образованное алгебраическими числами, которые можно построить. Очевидно, что можно сформировать любое количество полей
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.
Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.