Секреты числа Пи. Почему неразрешима задача о квадратуре круга - [12]
Множество натуральных чисел обозначается латинской буквой
Мы с удивлением обнаружим, что часть N, множество четных чисел, соответствует самому
Поэтому
|{четные числа}| = |
Часть чего-либо бесконечного также может быть бесконечной и иметь то же кардинальное число.
Люди много веков жили, повернувшись спиной к бесконечности. С подобным безразличием покончил немецкий математик высшего класса и непревзойденного ума, хоть и несколько эксцентричный. Его звали Георг Кантор.
Кардинальными числами конечных множеств являются натуральные числа. Кардинальные числа бесконечных множеств намного больше. Специалисты называют их трансфинитными, что дословно означает «находящиеся за пределами конечного». Наименьшее из трансфинитных чисел — это |
|{1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11,}| = |
Происхождение этого необычного знака таково:
(читается «алеф») — первая буква еврейского алфавита. Ноль, указанный как индекс, означает, что речь идет о наименьшем из всех алеф (алеф-нуле). Существует много кардинальных чисел, каждое имеет свой индекс:Число
* * *
ГЕОРГ КАНТОР (1845–1918)
Этот немецкий математик русского происхождения считается одним из величайших умов человечества. Он известен как создатель современной теории множеств и трансфинитных чисел. Его передовые идеи навлекли на себя нападки многих могущественных недоброжелателей, что заметно препятствовало академической карьере Кантора. Депрессии, которым был подвержен Кантор (он умер в психиатрической больнице), вероятно, были вызваны невозможностью проверить некоторые из его гипотез. Сегодня нам известно, что ответов на некоторые вопросы, которыми задавался Кентор, не существует, но определенные методы, которые он использовал в доказательствах, могут по праву называться гениальными.
* * *
Но здесь нас подстерегает множество сюрпризов: бесконечное множество
математики называют множеством целых чисел, и
то увидим, что |
Сделаем еще один шаг вперед: рассмотрим множество дробей, или так называемых дробных чисел. Дробь определяется числителем и знаменателем и записывается в виде а/Ь. Если а кратно Ь, то а/Ь обозначают целым числом с, которое равно делению а на Ь без остатка:
а/Ь = с.
Фактически одним и тем же числом могут обозначаться разные дроби:
756/378 = 524/262 = 6/3 = 2.
Однако очевидно, что существуют и другие дроби, которые нельзя выразить целым числом, например 1/2 или 5/3. Существует больше дробных чисел, чем целых, так как всякое целое число можно представить в виде дроби. Имеем
Символ
означает «строгое включение подмножества». Это своеобразная разновидность знака < для множеств.Множество дробных чисел обозначается буквой
Можно было бы ожидать, что кардинальное число
больше, чем кардинальное число , но вы уже видели, что здравый смысл не всегда применим к бесконечности.Кантор «пронумеровал» дроби с помощью извилистой линии, изобразив нечто похожее на этот рисунок:
Нет никаких сомнений, что на рисунке помещаются все дроби, так как в каждом ряду содержатся все возможные числители, а в каждом столбце — все возможные знаменатели. Если мы хотим найти число а/Ь, то это очень просто сделать, перейдя к строке а и столбцу Ь. Также не вызывает сомнений, что каждой дроби (иными словами, каждому рациональному числу) соответствует последовательность стрелок, идущая к нему. Поэтому достаточно пронумеровать стрелки (1, 2, 3, 4, 5…), чтобы прийти к результату:
Сделаем еще один шаг. Говорят, что число является алгебраическим, когда оно является корнем многочлена
а>nх>n + а>n-1х>n-1 +… + а>1х + а>0,
все коэффициенты которого (а>n,а>n-1…, а>1, а>0) являются рациональными числами.
Существует великое множество алгебраических чисел. По сути, любое рациональное число является алгебраическим. Если мы рассмотрим произвольное рациональное число а/Ь, уравнение
х — а/Ь = 0
имеет решение х = а/Ь, а его коэффициенты являются рациональными числами: a>1 = 1 и а>0 = — а/Ь.
Существует множество других алгебраических чисел: так, число √2 является иррациональным и является корнем уравнения х>2 — 2 = 0, то есть удовлетворяет всем необходимым условиям. Алгебраическим также является такое известное число, как золотое число Ф — оно является корнем уравнения
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.
Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.