Секреты числа Пи. Почему неразрешима задача о квадратуре круга - [13]

Шрифт
Интервал

>2х — 1 = 0.

В 1874 году Кантор был еще молод и не страдал от психических расстройств. В одной из своих работ он доказал, что множество алгебраических чисел (будем обозначать его

), включающее все рациональные числа, является счетным множеством. Следовательно,



При этом каждое из этих множеств строго больше последующего:



Появление вещественных чисел

Мир чисел огромен. Пока что мы видели лишь его часть, которая является счетной.

Возможно, лучший способ рассказать о числах — это рассмотреть подробно их десятичную запись. Исследуем подробно множество всех десятичных чисел. Вообще говоря, десятичное число вида

34658,124796

является лишь формой записи следующего выражения

3∙10>4 + 4∙10>3 + 6∙10>2 + 5∙10>1 + 8∙10>0 + 1∙10>-1 + 2∙10>-2 + 4∙10>-3 + 7∙10>-4 + 9∙10>-5 + 6∙10>-6

Цифры слева от запятой соответствуют положительным степеням 10, справа от запятой — отрицательным степеням. Вспомним, что

a∙10>-n= a/10>n

Десятичная система счисления — это позиционная система счисления по основанию 10. Это лишь способ записи чисел, но сколь удобный способ! Это поистине великое достижение человечества.


СИМОН СТЕВИН (1548–1620)

Этот голландский ученый родился в бельгийском городе Брюгге. Он был военным инженером, занимался музыкой, физикой, математикой и бухгалтерией. Он вошел в историю как изобретатель двойной бухгалтерской записи, которая в значительной мере способствовала прогрессу в экономике и торговле. Но его вклад в математику еще важнее: в своем труде De Thiende («Десятая») он представил десятичную форму записи чисел. Эта система была слишком сложна, поэтому широкое распространение получили более поздние версии, например вариант, предложенный Джоном Непером,



Страница книги De Thiende, на которой приведен пример десятичной записи Стевина, не слишком удобной для повседневного использования. Единицы обозначаются кружком, обведенным вокруг 0, десятки — другим кружком вокруг 1, сотни — кружком вокруг 2 и так далее.

* * *

Десятичная дробь может быть конечной или бесконечной. Ниже приведен пример для обоих случаев:

1,234567890101112131415161718192021223242526…

127,789564.

Первое число — бесконечная десятичная дробь. Вторая дробь также содержит бесконечное количество знаков после запятой, но в ином виде:

127,789564 = 127,789564000000000000000000…

Фактически мы можем записать число 127,789564 более «сложным» способом:

= 127,789563999999999999999999…

Тем не менее в этих случаях речь идет о конечной десятичной дроби. Простейшие десятичные числа — это натуральные числа (

): они являются положительными и не имеют знаков после запятой. За ними следуют целые числа (
), которые могут быть отрицательными, но также не имеют знаков после запятой. Рациональные числа (
) включают в себя эти множества и имеют любопытную десятичную запись: цифры рационального числа имеют период, то есть некая группа цифр с определенного момента начинает повторяться. Вспомним, что рациональные числа являются дробями, или дробными числами, которые записываются в виде а/Ь, где а — целое, a Ь — натуральное число. Чтобы перейти от этой формы к десятичной записи, нужно разделить а на Ь, и каков же будет результат? Остаток не может превышать Ь, и после деления, выполненного Ь раз, числа начнут повторяться снова и снова. Это прекрасно видно на примере простейших дробей, в частности

11/7 = 1,571428571428571428…,

где период, или множество повторяющихся цифр, всегда равен 571428. Иногда период имеет гигантские размеры, но это не означает, что десятичное число будет иметь бесконечное количество знаков — они будут повторяться бесконечное число раз.

В этот момент неизбежно возникает вопрос: если периодические дроби соответствуют рациональным числам, то как быть с непериодическими десятичными дробями? Все очень просто: они являются не рациональными, а иррациональными.


ДИАГОНАЛЬНОЕ ДОКАЗАТЕЛЬСТВО

Рассуждения Кантора, которые лежат в основе доказательства счетности множества десятичных дробей (то есть ), останутся в истории как доказательство его гениальности. Они оригинальны, но в то же время понятны. Это доказательство приобрело такую известность, что получило собственное название: диагональный метод, метод диагонализации, или диагональное доказательство. Посмотрим, почему это доказательство называется «диагональным».

Мы выполним действия, которые в математике именуются «сведением к абсурду», когда некая гипотеза предполагается истинной, а затем показывается, что из нее вытекает абсурдное заключение. Это означает, что исходная гипотеза ложна. Предположим (ниже мы докажем ложность этого утверждения), что множество десятичных дробей (т. е. вещественных чисел) является счетным. Будем говорить о счетности не всего множества , а лишь десятичных дробей, лежащих на интервале (0; 1), то есть удовлетворяющих условию 0 < х < 1, - лишь малой части

. Предположим, что десятичные дроби пронумерованы и перечислены друг под другом, не обязательно по порядку, так, как показано ниже:

В этом списке должны фигурировать все десятичные дроби, заключенные в промежутке между 0 и 1, так, чтобы нельзя было записать никакую десятичную дробь л, которая бы не содержалась в этом списке. Кантор, основываясь на этом утверждении, создал новую десятичную дробь


Еще от автора Хоакин Наварро
Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.


Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.