Сборник задач по математике с решениями для поступающих в вузы - [22]
13.2.
.13.3.
.13.4. tg 2x tg 7x = 1.
13.5.
13.6. 2 tg 3x − 3 tg 2x = tg² 2x tg 3x.
13.7. sin³ x + cos³ x + >1/>√2 sin 2x sin (x + >π/>4) = cos x + sin 3x.
13.8. 4 tg 4x − 4 tg 3x − tg 2x = tg 2x tg 3x tg 4x.
13.9. Найдите решения уравнения
лежащие в интервале (0, 2π).
13.10. Решите уравнение
sin (x − α) = sin x − sin α.
13.11. Найдите решения уравнения
|cos 2x| = |sin² x − а|
(а — действительное число), удовлетворяющие неравенству
0 ≤ x ≤ 2π.
Решите уравнения:
13.12.
13.13. (tg x + sin x)>½ + (tg x − sin x)>½ = 2 tg>½x cos x.
13.14. ctg 2x + 3 tg 3x = 2 tg x + >2/>sin 4x.
13.15. sec x² + cosec x² + sec x² cosec x² = 1.
13.16.
13.17. 4 sin x + 2 cos x = 2 + 3 tg x.
13.18. cos x = cos² >3x/>4.
13.19. sin 4x[2 + ctg x + ctg (>π/>4 − x) = 2√2(1 + sin 2x + cos 2x).
13.20. sin 4x sin x − sin 3x sin 2x = ½ cos 3x + (1 + cos x)>½ .
13.21. sin 4x = m tg x, где m > 0.
13.22. sin >x/>2 (sin x + sin 2x + ... + sin 100x) = ½ sin >101x/>2.
13.23. sin² x + sin 2x sin 4x + ... + sin nx sin n²x = 1.
13.24. 4 cos x − 2 cos 2x − cos 4x = 1.
13.25.
13.26. sin³ x + cos³ x = 1.
13.27. cos² 3x + ¼ cos² x = cos 3x cos>4x.
13.28. При каких значениях а уравнение
1 + sin² ax = cos x
имеет единственное решение?
Решите системы:
13.29.
13.30.
13.31.
13.32.
13.33.
13.34.
13.35.
13.36.
13.37.
13.38.
13.39. Найдите все пары чисел x, у, которые удовлетворяют уравнению
tg>4x + tg>4у + 2 ctg² x ctg² у = 3 + sin² (x + у).
13.40. Решите уравнение
sin² x + ¼ sin² 3x = sin x sin² 3x.
13.41. Решите уравнение
cos x + cos у − cos (x + у) = >3/>2.
13.42. Найдите все пары чисел а и b, при которых для любых x и у, удовлетворяющих условию x + у = а (где x ≠ >π/>2 + nπ, у ≠ >π/>2 + nπ, n, m = 0, ±1, ±2, ...), верно равенство tg x + tg у + tg x tg у = b.
13.43. Найдите все пары чисел x и у, которые удовлетворяют уравнению
13.44. Решите уравнение
sin x + 2 sin 2x = 3 + sin 3x.
13.45. Решите уравнение
sin x (cos >x/>4 − 2 sin x) + cos x (1 + sin >x/>4 − 2 cos x) = 0
13.46. Решите уравнение
13.47. Найдите все значения x, удовлетворяющие одновременно следующим уравнениям:
cos 6х + cos 8х = 0, cos Зх = 2 sin² 2х
при условии, что |x| < 5.
13.48. Решите уравнение
13.49. Решите уравнение
13.50. Решите уравнение
2 tg x + tg >x/>2 + 4 ctg 2х = ctg Зх.
13.51. Решите уравнение
Глава 14
Тригонометрические неравенства
Решите неравенства:
14.1. |sin x| > |cos x|.
14.2. 1 − sin x + cos x < 0.
14.3. sin x − З cos x < 0.
14.4. 2 cos 2х + sin 2х > tg x.
14.5. cos x tg 2х ≤ 0.
14.6. 6 + cos 2х + 13 cos x ≥ |5 − 2 cos 2х − 6 sin² x − З cos x|.
14.7. Найдите решения неравенства
sin 2х > √2 sin² x + (2 − √2) cos² x,
лежащие в интервале (0, 2π).
14.8. При каких значениях α, 0 ≤ α ≤ π, уравнение
2х² − 2(2 cos α − 1)x + 2 cos² α − 5 cos α + 2 = 0 имеет различные действительные корни? Исследуйте знаки корней.
Решите неравенства:
14.9.
14.10.
14.11.
14.12. tg x tg 3x < −1.
14.13.
14.14. Найдите все значения x из интервала 0 < x < π, удовлетворяющие неравенству
14.15. Докажите, что при любом а имеет место неравенство
4 sin 3α + 5 ≥ 4 cos 2α + 5 sin α.
14.16. Решите неравенство
a² sin² x ≤ sin² 3x, а > 0.
14.17. При каких значениях x и у выражение
(2 cos t + ½ cos x cos у ) cos x cos у + 1 + cos x − cos у + cos 2t
положительно при всех значениях t? Укажите, где на координатной плоскости расположены точки (x, у), удовлетворяющие этому условию.
Глава 15
Трансцендентные неравенства
Решите неравенства:
15.1. (log>sin x 2)² < log>sin x (4 sin³ x).
15.2.
15.3. Найдите решения неравенства
log>2 cos x > log>2 tg x,
удовлетворяющие условию 0 ≤ x ≤ π.
Решите неравенства:
15.4. 4 log>16 cos 2х + 2 log>4 sin x + log>2 cos x + 3 < 0.
15.5. log>|cos x + √3 sin x|½ > 0, если 0 ≤ x ≤ 2π.
15.6. sin |lg x| + cos |lg x| > − >1/>√2.
15.7.
15.8. arctg √x > arccos (1 − x).
15.9. (4х − x² − 3) log>2 (cos² πх + 1) ≥ 1.
15.10.
Глава 16
Трансцендентные уравнения
16.1. Докажите, что уравнение
2 sin² >x/>2 sin² >x/>6 = >1/>x² + x²
не имеет корней.
Решите уравнения:
16.2.
16.3. (tg x)>sin x = (ctg x)>cos x.
16.4. sin (2>х − 1 + 2>х − 2) cos (2>х − 1 + 2>х − 2) = ¼.
16.5. lg sin x + lg sin 5х = lg sec 4х.
16.6. lg² (sin x + 4) + 2 lg (sin x + 4) − >5/>4 = 0.
16.7. log>sin x (sin x − ¼ cos x) = 3.
16.8. log>8 cos² x sin x = ½.
16.9. Найдите положительные решения уравнения
tg [ 5π(½)>x] = 1.
16.10. Решите уравнение
lg² cos x + 2 lg cos x + m² + 2m − 3 = 0.
16.11. Для каждого действительного числа а решите уравнение
lg² sin x − 2а lg sin x − а² + 2 = 0.
16.12. Решите систему уравнений
16.13. Решите уравнение
4>sin² πx + 4>cos² πx = −8x² + 12|x| − ½.
16.14. Решите уравнение
Глава 17
Функции и их свойства
17.1. Решите неравенство
4f(x) + g(x) ≤ 0,
если функции f(x) и g(x) удовлетворяют системе
17.2. Сколько различных действительных корней имеет уравнение f(f(x)) = 0, где f(x) = x³ − 6x² + 9x?
17.3. Найдите все целые x и у, удовлетворяющие системе
17.4. Решите систему уравнений
17.5. Дана функция f(x) = 6х² + 2х + 6. Известно, что ее график касается графика первообразной F(x) этой функции в точке, абсцисса которой превосходит число 0,7. Найдите все значения x, для которых
17.6. Изобразите на плоскости (x, у) множество точек, координаты которых удовлетворяют неравенству
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.