Сборник задач по математике с решениями для поступающих в вузы - [24]

Шрифт
Интервал

>1x и t>2у, что затруднит использование уравнений (1). Если же в уравнении (3) раскрыть скобки и вспомнить, что xt>1 = ⅓ и уt>2 = ⅓, то получим уравнение

t>3(x + у) = ½.

С его помощью можно выразить x + у через t>3, а из уравнения zt>3 = ⅓ можно выразить через t>3 и неизвестное z. Подставляя эти выражения в (2), получим

2t>3 + 9 = 3t>3,

откуда

t>3 = 9.

Дальнейшее решение системы не представляет труда. Находим последовательно: t>2 = 11, z = >1/>27, у = >1/>33. Из уравнения (2) определяем x = >5/>198 и t>1 = >1/>3>x= >66/>5. Итак, первый рабочий работал 13 ч 12 мин.

Эту же задачу можно было бы решить с помощью меньшего числа неизвестных, если ввести в рассмотрение, помимо величин x, у и z, имеющих прежний смысл, величину t, обозначающую время, в течение которого рабочие работали вместе, т. е. время работы третьего рабочего. Это привело бы нас к системе:

t(x + у + z) = >5/>6     (1′)

(за время t рабочие сделали вместе >5/>6  всей работы),

tz = (t + 2)у = ⅓     (2′)

(за время t третий рабочий сделал треть всей работы, а второму на это потребовалось на 2 ч больше),

>1/>x + y + 9 = >1/>z     (3′)

(первый и второй рабочие выполняют всю работу на 9 ч быстрее, чем третий, работая один).

Поскольку tz = ⅓, то из (1′) найдем 

x + y = >1/>2t

Вместе с z = >1/>3t подставим в (3′). Получим

t = 9.

Как и прежде, найдем последовательно z, у и x. На вопрос задачи можно ответить, вспомнив, что первый рабочий работал столько, чтобы успеть сделать ⅓ всей работы, т. е. >1/>3x.

Конечно, второе решение выглядит более изящно, чем первое. Однако признать его лучшим трудно, поскольку за те простые уравнения, от которых мы отказались, пришлось уплатить некоторым усложнением логики.

А теперь приведем арифметическое решение этой задачи — решение, в котором удается обойтись вообще без составления уравнений.

Так как рабочие совместно выполнили 1 − >1/>6 = >5/>6 всей работы, причем третий сделал ⅓, то на долю первого и второго осталось >5/>6 − ⅓ = ½ всей работы. Следовательно, если бы первый и второй успели выполнить всю работу, то третий за то же самое время сделал бы ⅔; ему останется 1 − ⅔ = ⅓ , на что ему потребовалось бы в силу последнего условия задачи 9 ч.

Так как каждый рабочий сделал одинаковое количество деталей, т. е. ⅓ всей работы, то третий работал ровно 9 ч. Тогда второй работал 9 + 2 = 11 ч. Так как он тоже сделал ⅓ всей работы, то его производительность равна >1/>33 всей работы в час. Мы знаем, что первый и второй тратят на ½ всей работы столько же, сколько третий на ⅓, т. е. 9 ч. Второй сделает за это время 33 · 9 = >3/>11 всей работы. Следовательно, на долю первого приходится ½ − >3/>11 = >5/>22. Его производительность >5/>22 : 9 = >5/>198 в час. Свою треть работы он выполнил за ⅓ : >5/>198 = 13>1/>5 (ч), т. е. за 13 ч 12 мин.

Хотя решение выглядит намного красивее, чем первые два, его тоже трудно назвать существенно лучшим. Взгляните внимательно на уравнения второго решения, и вы заметите, что третье решение получено почти «дословным» пересказом этих уравнений.

Таким образом, на пути к решению задачи вас не должно останавливать большое число неизвестных, которые, по вашему мнению, следует ввести.

Однако старайтесь не вводить неизвестные, размерность которых не встречается в условии и не может быть получена как комбинация элементов условия. Введение таких неизвестных может усложнить задачу.

Вот простой пример.

Пример 2. Расстояние между двумя пунктами A и В пароход проходит по течению реки на а ч быстрее, чем то же расстояние в стоячей воде, и на b ч быстрее, чем против течения (b > а > 0). За какое время пароход проходит расстояние от A до В по течению?

Если ввести в рассмотрение неизвестные: v — скорость парохода в стоячей воде, w — скорость течения реки, x — расстояние, то получим систему двух уравнений с тремя неизвестными:

Найти из этой системы величину >x/>v + w можно, если сделать следующие преобразования:

и обозначить >v/>x = у, >w/>x = z. Мы придем к системе относительно у и z, решив которую, вычислим >1/>y + z.

Однако такую систему можно было получить сразу, если бы мы не ввели в качестве неизвестного x пройденное пароходом расстояние.

В условии задачи не было чисел, выраженных в километрах, однако расстояние между пунктами являлось существенным связующим звеном. Это означает, что мы должны были принять его за единицу, а скорости v и w выражать в частях расстояния, пройденных за один час. В результате мы пришли бы к системе

которую не пришлось бы преобразовывать.


Разберем еще одну задачу, на примере которой видно, как решаются задачи на движение.

Пример 3. Из пункта С в пункт D выехал товарный поезд. Через 5 ч 5 мин навстречу ему из пункта D выехал пассажирский поезд. Они встретились в каком-то пункте А. После этого пассажирский поезд приехал в пункт С через 4 ч 6 мин, а товарный — в пункт D через 12 ч 55 мин. Сколько времени каждый поезд находился в пути?

Условия задачи можно отразить на схеме (рис. 18.1), где буквой В обозначено положение товарного поезда в момент выхода пассажирского из пункта D.

То обстоятельство, что оба поезда находились в точке А одновременно, мы отразим на схеме с помощью вертикального отрезка, связывающего оба пути. Схема подсказывает нам и выбор неизвестных. На путь от


Рекомендуем почитать
Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Снова кубик Рубика

Из журнала "Юный техник" №2, 1983 г.


Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.