Сборник задач по математике с решениями для поступающих в вузы - [26]

Шрифт
Интервал

, если скорости обоих мотоциклов одинаковы.

18.13. Пассажир, опоздавший на поезд, сначала решил догнать его на такси, однако через некоторое время пересел на автобус, заплатив за билет А p., и прибыл на одну из станций одновременно с поездом. Между тем он обнаружил, что если бы продолжал ехать на такси, то догнал бы поезд на τ ч раньше, истратив при этом на В p. меньше. Какова скорость поезда, если скорость такси v>1 км/ч, автобуса v>2 км/ч (v>1 > v>2), а стоимость проезда 1 км на такси а p.?

18.14. Товарный поезд, шедший из А в В, прибыл в С одновременно с пассажирским, шедшим из В в А со скоростью в m раз большей, чем скорость товарного поезда. Оба состава простояли t ч в пункте С, затем продолжили путь, причем каждый увеличил скорость на 25%. Товарный поезд прибыл в В на t>1 ч позже, а пассажирский в А на t>2 ч позже, чем если бы они двигались без остановки с первоначальной скоростью. Насколько раньше товарный поезд вышел из А, чем пассажирский из В?

18.15. Расстояние между пунктами А и В равно s км. Из пункта А в пункт В вылетел вертолет, а через t ч в том же направлении вылетел самолет. Самолет догнал вертолет в d км от А, долетел до В и сразу повернул обратно. В d км от В самолет встретил вертолет и вернулся в А позднее, чем вертолет прибыл в В. Насколько раньше вертолет прибыл в В, чем самолет вернулся в А?

18.16. В озеро впадают две реки. Пароход выходит из порта M на первой реке и плывет вниз по течению, затем через озеро (на озере течение отсутствует) и по второй реке вверх по течению до порта N. Придя в N, пароход отправляется в обратный путь.

Известна собственная скорость парохода v и скорости течения рек: v>1 и v>2. На путь от M до N, равный по длине s, и на обратный путь пароход тратит одинаковое время t. Какое расстояние пароход проходит по озеру?

18.17. Из пункта А в пункт В в 8 ч утра выходит скорый поезд. В этот же момент из В в А выходят пассажирский и курьерский поезда, причем скорость курьерского в два раза больше скорости пассажирского. Скорый поезд прибывает в В в 13 ч 50 мин того же дня, а встречает курьерский поезд не ранее 10 ч 30 мин утра. Когда пассажирский поезд прибудет в пункт А, если между моментами встреч скорого поезда с курьерским и скорого поезда с пассажирским проходит не менее часа?

18.18. Завод должен получить 1100 деталей. На базе имеются комплекты по 70, 40 и 25 деталей. Стоимость пересылки одного комплекта равна соответственно 20, 10 и 7 p. Какие комплекты и в каком количестве следует заводу заказать, чтобы расходы по пересылке были наименьшими? Переупаковка комплектов на базе не допускается.

Глава 19

Последовательности и прогрессии

Рассмотрим функцию натурального аргумента а>n = f(n), где либо n = 1, 2, 3, ..., k, либо n = 1, 2, 3, ..., k, ... . Если при любых натуральных i и j, таких, что i < j, значение а>j считается последующим по отношению к а>i, то множество значений а>n этой функции образует последовательность.

Последовательность обозначают, записывая ее члены а>n один за другим в порядке возрастания номера n: а>1, a>2, а>3, ... .

Если номер n принимает значения n = 1, 2, 3, ..., k, то последовательность называется конечной. Если же n = 1, 2, 3, ... (т. е. n пробегает все натуральные числа), то последовательность называется бесконечной.

а>n = f(n) называется общим членом последовательности. Если для любых i и j, таких, что i < j, выполняется неравенство а>i < а>j, то последовательность называется возрастающей. Если при тех же условиях будет а>i > а>j, то последовательность называется убывающей. Если же при любых i и j, таких, что i < j, выполняется неравенство а>i ≤ а>j (а>i ≥ а>j), то последовательность называется неубывающей (невозрастающей).

Последовательность, в которой

а>i> + 1 = а>i + d

при всех натуральных i, называется арифметической прогрессией. Число d называется разностью арифметической прогрессии. Имеют место формулы:

2а>n = а>n> + 1 + а>n> − 1;     а>n = а>1 + d(n − 1);

где S>n — сумма n первых членов прогрессии.

Последовательность, в которой

a>i> + 1 = qa>i

при всех натуральных i, причем q ≠ 0 и a>i ≠ 0, называется геометрической прогрессией, а число q называется ее знаменателем.

Для геометрической прогрессии имеют место формулы:

a>n = a>1q>n> − 1

  a²>n = a>n> − 1a>n> + 1.

Вторая формула верна, если q ≠ 1. Бесконечная геометрическая прогрессия, у которой |q| < 1, называется бесконечно убывающей.

Бесконечно убывающая геометрическая прогрессия не обязательно является убывающей последовательностью. Она может быть возрастающей, например, при a>1 = −1, q = ½ , а может быть колеблющейся: a>1 = 1, q = −½ .

Если для бесконечной последовательности существует конечный предел последовательности ее сумм S>n, т. е. существует

, то S называется суммой всех членов этой бесконечной последовательности.

Для того чтобы бесконечная геометрическая прогрессия имела сумму всех своих членов, необходимо и достаточно, чтобы она была бесконечно убывающей. В этом случае


19.1. Общий член последовательности

 Является эта последовательность возрастающей или убывающей?

19.2. Докажите, что если члены a>p, a>q, a>r, a>s арифметической прогрессии образуют геометрическую прогрессию, то последовательность


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.