Сборник основных формул по химии для ВУЗов - [7]
Если f = 1, то ионы свободны и не взаимодействуют между собой. Это имеет место в очень разбавленных растворах, в растворах слабых электролитов и т. д.
Если f < 1, то ионы взаимодействуют между собой. Чем меньше f, тем больше взаимодействие между ионами.
Коэффициент активности зависит от ионной силы раствора I: чем больше ионная сила, тем меньше коэффициент активности.
Ионная сила раствора I зависит от зарядов z и концентраций с ионов:
I = 0,52Σс • z>2.
Коэффициент активности зависит от заряда иона: чем больше заряд иона, тем меньше коэффициент активности. Математически зависимость коэффициента активности f от ионной силы I и заряда иона z записывается с помощью формулы Дебая-Хюккеля:
Коэффициенты активности ионов можно определить с помощью следующей таблицы:
6.5 Ионное произведение воды. Водородный показатель
Вода – слабый электролит – диссоциирует, образуя ионы Н>+ и OH¯. Эти ионы гидратированы, т. е. соединены с несколькими молекулами воды, но для простоты их записывают в негидратированной форме
Н>2O ↔ Н>+ + OH¯.
На основании закона действия масс, для этого равновесия:
Концентрацию молекул воды [Н>2O], т. е. число молей в 1 л воды, можно считать постоянной и равной [Н>2O] = 1000 г/л : 18 г/моль = 55,6 моль/л. Отсюда:
К • [Н>2O] = К(Н>2O) = [Н>+] • [OH¯] = 10>-14 (22°C).
Ионное произведение воды – произведение концентраций [Н>+] и [OH¯] – есть величина постоянная при постоянной температуре и равная 10>-14 при 22°C.
Ионное произведение воды увеличивается с увеличением температуры.
Водородный показатель рН – отрицательный логарифм концентрации ионов водорода: рН = – lg[H>+]. Аналогично: pOH = – lg[OH¯].
Логарифмирование ионного произведения воды дает: рН + рOH = 14.
Величина рН характеризует реакцию среды.
Если рН = 7, то [Н>+] = [OH¯] – нейтральная среда.
Если рН < 7, то [Н>+] > [OH¯] – кислотная среда.
Если рН > 7, то [Н>+] < [OH¯] – щелочная среда.
6.6. Буферные растворы
Буферные растворы – растворы, имеющие определенную концентрацию ионов водорода. рН этих растворов не меняется при разбавлении и мало меняется при добавлении небольших количеств кислот и щелочей.
I. Раствор слабой кислоты НА, концентрация – с>кисл, и ее соли с сильным основанием ВА, концентрация – с>соли. Например, ацетатный буфер – раствор уксусной кислоты и ацетата натрия: CH>3COOH + CHgCOONa.
рН = рК>кисл + lg(с>соли/с>кисл).
II. Раствор слабого основания ВOH, концентрация – с>осн, и его соли с сильной кислотой ВА, концентрация – с>соли. Например, аммиачный буфер – раствор гидроксида аммония и хлорида аммония NH>4OH + NH>4Cl.
рН = 14 – рК>осн – lg(с>соли/с>осн).
6.7. Гидролиз солей
Гидролиз солей – взаимодействие ионов соли с водой с образованием слабого электролита.
Примеры уравнений реакций гидролиза.
I. Соль образована сильным основанием и слабой кислотой:
Na>2CO>3 + H>2O ↔ NaHCO>3 + NaOH
2Na>+ + CO>3>2- + H>2O ↔ 2Na>+ + HCO>3¯ + OH¯
CO>3>2- + H>2O ↔ HCO>3¯ + OH¯, pH > 7, щелочная среда.
По второй ступени гидролиз практически не идет.
II. Соль образована слабым основанием и сильной кислотой:
AlCl>3 + H>2O ↔ (AlOH)Cl>2 + HCl
Al>3+ + ЗCl¯ + H>2O ↔ AlOH>2+ + 2Cl¯ + Н>+ + Cl¯
Al>3+ + H>2O ↔ AlOH>2+ + Н>+, рН < 7.
По второй ступени гидролиз идет меньше, а по третьей ступени практически не идет.
III. Соль образована сильным основанием и сильной кислотой:
KNO>3 + H>2O ≠
К>+ + NO>3¯ + Н>2O ≠ нет гидролиза, рН ≈ 7.
IV. Соль образована слабым основанием и слабой кислотой:
CH>3COONH>4 + H>2O ↔ CH>3COOH + NH>4OH
CH>3COO¯ + NH>4>+ + H>2O ↔ CH>3COOH + NH>4OH, рН = 7.
В ряде случаев, когда соль образована очень слабыми основаниями и кислотами, идет полный гидролиз. В таблице растворимости у таких солей символ – «разлагаются водой»:
Al>2S>3 + 6Н>2O = 2Al(OH)>3↓ + 3H>2S↑
Возможность полного гидролиза следует учитывать в обменных реакциях:
Al>2(SO>4)>3 + 3Na>2CO>3 + 3H>2O = 2Al(OH)>3↓ + 3Na>2SO>4 + 3CO>2↑
Степень гидролиза h– отношение концентрации гидролизованных молекул к общей концентрации растворенных молекул.
Для солей, образованных сильным основанием и слабой кислотой:
[OH¯] = ch, рOH = – lg[OH¯], рН = 14 – рOH.
Из выражения следует, что степень гидролиза h (т. е. гидролиз) увеличивается:
а) с увеличением температуры, так как увеличивается K(H>2O);
б) с уменьшением диссоциации кислоты, образующей соль: чем слабее кислота, тем больше гидролиз;
в) с разбавлением: чем меньше с, тем больше гидролиз.
Для солей, образованных слабым основанием и сильной кислотой
[Н>+] = ch, рН = – lg[H>+].
Для солей, образованных слабым основанием и слабой кислотой
6.8. Протолитическая теория кислот и оснований
Протолиз – процесс передачи протона.
Протолиты – кислоты и основания, отдающие и принимающие протоны.
Кислота – молекула или ион, способные отдавать протон. Каждой кислоте соответствует сопряженное с нею основание. Сила кислот характеризуется константой кислоты К>к.
Н>2CO>3 + Н>2O ↔ Н>3O>+ + HCO>3¯
К>к = 4 × 10>-7
[Al(Н>2O)>6]>3+ + Н>2O ↔ [Al(Н>2O)>5OH]>2+ + Н>3O>+
К>к = 9 × 10>-6
Основание – молекула или ион, способные принимать протон. Каждому основанию соответствует сопряженная с ним кислота. Сила оснований характеризуется константой основания К>0.
NH>3 × Н>2O (Н>2O) ↔ NH>4>+ + OH¯
К>0= 1,8 ×10>-5
Амфолиты
Почему одни запахи кажутся нам чудесными, а другие вызывают отвращение? Есть ли на свете запахи, которые всегда воспринимаются как хорошие или дурные всеми представителями нашего вида – независимо от культуры, прошлого опыта и физиологических различий? Можно ли создать молекулу с каким-то определенным ароматом? А составить ольфакторную карту?.. И кстати, какую роль играют запахи в жизни разных насекомых? Паоло Пелоси, профессор химии, изучающий обоняние, автор более 150 научных публикаций, ответит на все эти и многие другие вопросы, познакомит с новейшими достижениями науки о запахах и расскажет об удивительных механизмах обоняния, которыми эволюция наделила всевозможных живых существ – включая человека. «Мы часто не обращаем внимания на запахи и почти всегда их недооцениваем.
В книге рассмотрена широкая гамма широко представленных на рынке автохимии присадок и добавок к различным автомобильным технологическим средам: смазочным материалам, топливу, охлаждающим и стеклоочищающим жидкостям.В доступной форме приведено описание характеристик и особенностей свойств различных препаратов, даны рекомендации по их применению, в том числе для безразборного технического сервиса систем смазки и охлаждения, а также топливной системы автомобильного двигателя. Представлены препараты для омывающих жидкостей, специальные добавки для консистентных смазок и жидкостей для автоматических коробок передач.Особое внимание уделено применению очистителей топливных систем, антигелей, цетан- и октан-корректоров, ремонтно-восстановительных препаратов и технологий, в т. ч., реметаллизантов, геомодификаторов трения, кондиционеров поверхности, слоистых и нанодобавок, находящих все более широкое применение и позволяющих значительно повысить надежность автомобильной и другой техники.
Генрих Эрлих – не только доктор химических наук, профессор Московского государственного университета и серьезный ученый, но и прекрасный научный популяризатор, умеющий увлекательно, просто, без единой формулы рассказать об очень сложных вещах. Говоря о нанотехнологиях, он разрушает множество мифов, например о том, что эти чудесные технологии по явились только сегодня. На самом деле, они существуют уже по крайне мере 250 лет, и за эти годы произошло много интересного – и в науках, и в технологиях. Обо всем этом, а еще и о судьбах удивительных людей, без которых наш мир сегодня был бы совсем другим, – эта книга.
В жизни насекомых чрезвычайно большую роль играют запахи. Общаясь между собой при помощи пахучих молекул-феромонов, шестиногие «рассказывают» об источнике пищи, образуют брачные пары, охраняют свое жилище, метят «владения». О том, как ученые разгадали тайну химического языка насекомых, синтезировали феромоны в лабораториях и разработали способы их практического применения, узнает читатель этой книги.Ее с увлечением прочтут те, кто интересуется прикладной энтомологией и вопросами охраны окружающей среды.
Настоящее пособие представляет собой краткое изложение ответов на экзаменационные вопросы. Структура пособия соответствует общегосударственному образовательному стандарту по дисциплине «Органическая химия». Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету по данному предмету и успешно сдать их.Пособие предназначено для студентов высших, среднеспециальных и средних образовательных учреждений.
Известный американский биохимик, популяризатор науки и писатель-фантаст А. Азимов знакомит читателя с предметом химии, историей возникновения и развития основных идей и представлений.