Сборник основных формул по химии для ВУЗов - [8]
– протолиты, способные к отдаче и к присоединению протона.
HCO>3¯ + H>2O ↔ Н>3O>+ + CO>3>2-
HCO>3¯ – кислота.
HCO>3¯ + H>2O ↔ Н>2CO>3 + OH¯
HCO>3¯ – основание.
Для воды: Н>2O+ Н>2O ↔ Н>3O>+ + OH¯
K(H>2O) = [Н>3O>+][OH¯] = 10>-14 и рН = – lg[H>3O>+].
Константы К>ки К>0для сопряженных кислот и оснований связаны между собой.
НА + Н>2O ↔ Н>3O>+ + А¯,
А¯ + Н>2O ↔ НА + OH¯,
Отсюда
7. Константа растворимости. Растворимость
В системе, состоящей из раствора и осадка, идут два процесса – растворение осадка и осаждение. Равенство скоростей этих двух процессов является условием равновесия.
Насыщенный раствор – раствор, который находится в равновесии с осадком.
Закон действия масс в применении к равновесию между осадком и раствором дает:
Поскольку [AgCl>тв] = const,
К • [AgCl>тв] = K>s(AgCl) = [Ag>+] • [Cl¯].
В общем виде имеем:
А>mB>n(тв.) ↔ mA>+n + nB>-m
K>s(A>mB>n) = [А>+n]>m • [В>-m]>n.
Константа растворимости K>s(или произведение растворимости ПР) – произведение концентраций ионов в насыщенном растворе малорастворимого электролита – есть величина постоянная и зависит лишь от температуры.
Растворимость малорастворимого вещества s может быть выражена в молях на литр. В зависимости от величины s вещества могут быть разделены на малорастворимые – s < 10>-4 моль/л, среднерастворимые – 10>-4 моль/л ≤ s ≤ 10>-2 моль/л и хорошо растворимые s >10>-2 моль/л.
Растворимость соединений связана с их произведением растворимости.
В случае AgCl: AgCl ↔ Ag>+ + Cl¯
K>s= [Ag>+] • [CI¯]:
а) условие равновесия между осадком и раствором: [Ag>+] • [Cl¯] = K>s.
б) условие осаждения: [Ag>+] • [Cl¯] > K>s; в ходе осаждения концентрации ионов уменьшаются до установления равновесия;
в) условие растворения осадка или существования насыщенного раствора: [Ag>+] • [Cl¯] < K>s; в ходе растворения осадка концентрация ионов увеличивается до установления равновесия.
8. Координационные соединения
Координационные (комплексные) соединения – соединения с донорно-акцеп-торной связью.
Для K>3[Fe(CN)>6]:
ионы внешней сферы – 3К>+,
ион внутренней сферы – [Fe(CN)>6]>3-,
комплексообразователь – Fe>3+,
лиганды – 6CN¯, их дентатность – 1,
координационное число – 6.
Примеры комплексообразователей: Ag>+, Cu>2+, Hg>2+, Zn>2+, Ni>2+, Fe>3+, Pt>4+ и др.
Примеры лигандов: полярные молекулы Н>2O, NH>3, CO и анионы CN¯, Cl¯, OH¯ и др.
Координационные числа: обычно 4 или 6, реже 2, 3 и др.
Номенклатура. Называют сначала анион (в именительном падеже), затем катион (в родительном падеже). Названия некоторых лигандов: NH>3 – аммин, Н>2O – акво, CN¯ – циано, Cl¯ – хлоро, OH¯ – гидроксо. Названия координационных чисел: 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса. Указывают степень окисления комплек-сообразователя:
[Ag(NH>3)>2]Cl – хлорид диамминсеребра(I);
[Cu(NH>3)>4]SO>4 – сульфат тетрамминмеди(II);
K>3[Fe(CN)>6] – гексацианоферрат(III) калия.
Теория валентных связей предполагает гибридизацию орбиталей центрального атома. Расположение образующихся при этом гибридных орбиталей определяет геометрию комплексов.
Диамагнитный комплексный ион Fe(CN)>6>4-.
Цианид-ион – донор
Ион железа Fe>2+ – акцептор – имеет формулу 3d>64s>04p>0. С учетом диамагнитности комплекса (все электроны спарены) и координационного числа (нужны 6 свободных орбиталей) имеем d>2sp>3-гибридизацию:
Комплекс диамагнитный, низкоспиновый, внутриорбитальный, стабильный (не используются внешние электроны), октаэд-рический (d>2sp>3-гибридизация).
Парамагнитный комплексный ион FeF>6>3-.
Фторид-ион – донор.
Ион железа Fe>3+ – акцептор – имеет формулу 3d>54s>04p>0. С учетом парамагнитности комплекса (электроны распарены) и координационного числа (нужны 6 свободных орбиталей) имеем sp>3d>2-гибридизацию:
Комплекс парамагнитный, высокоспиновый, внешнеорбитальный, нестабильный (использованы внешние 4d-орбитали), октаэдрический (sp>3d>2-гибридизация).
Координационные соединения в растворе полностью диссоциируют на ионы внутренней и внешней сфер.
[Ag(NH>3)>2]NO>3 → Ag(NH>3)>2>+ + NO>3¯, α = 1.
Ионы внутренней сферы, т. е. комплексные ионы, диссоциируют на ионы металла и лиганды, как слабые электролиты, по ступеням.
где K>1, К>2, К>1_>2 называются константами нестойкости и характеризуют диссоциацию комплексов: чем меньше константа нестойкости, тем меньше диссоциирует комплекс, тем он устойчивее.
II. НЕОРГАНИЧЕСКАЯ ХИМИЯ
1. Основные классы неорганических соединений
1.1. Оксиды
Оксиды – сложные вещества, состоящие из атомов кислорода в степени окисления -2 и атомов другого элемента.
Номенклатура: Fe>2O>3 – оксид железа(III), Cl>2O – оксид хлора(I).
Несолеобразующие (безразличные) оксиды: CO, SiO, NO, N>2O.
Солеобразующие оксиды:
основные – оксиды металлов в степени окисления +1, +2,
амфотерные – оксиды металлов в степени окисления +2, +3, +4,
кислотные – оксиды металлов в степени окисления +5, +6, +7 и
оксиды неметаллов в степени окисления +1 – +7.
Горение простых веществ:
С + O>2 = CO>2
2Са + O>2 = 2СаО
Горение (обжиг) сложных веществ:
CH>4 + 2O>2 = CO>2 + 2Н>2O
4FeS>2 + 11O>2 = 2Fe>2O>3 + 8SO>2
Разложение сложных веществ:
CaCO>3 →t→ СаО + CO>2
2Fe(OH)>3 →t→ Fe>2O>3 + ЗН>2O
Когда рука тянется к пачке с чипсами, стоит воздержаться и отказать себе в удовольствии или все же можно съесть еще пару штучек? Собираясь на пляж, сколько солнцезащитного крема надо наносить на кожу и как вообще работает SPF? Кофе все-таки полезен или вреден? В книге «Ингредиенты», написанной химиком и популяризатором науки Джорджем Зейданом, рассматривается все многообразие химических веществ, которые разными путями оказываются в организме человека. Правда ли, что обработанные пищевые продукты – это настоящий яд, и как они провоцируют ожирение и другие заболевания? Почему мы обгораем на солнце и каковы последствия злоупотребления солнечными ваннами? Что происходит, когда химические вещества из продуктов и окружающей среды вступают в контакт с химическими веществами из нашего тела? Вы узнаете, почему вообще существуют переработанные пищевые продукты, а затем вместе с автором изучите химические вещества, воздействию которых подвергаетесь ежедневно.
В монографии рассмотрены проблемы механизмов неорганических реакций железа в процессах выплавки чугуна и стали, проблемы получения монокристаллической структуры решетки.
Пути отечественной науки XX в. и судьбы ее творцов — таково содержание воспоминаний академика А.Н. Несмеянова, охватывающих период 1900–1974 гг. А.Н. Несмеянов прошел путь от студента-химика Московского университета до его ректора, от научного сотрудника — до президента АН СССР. Автор излагает свои взгляды на развитие науки, анализирует причины, по которым тормозилось развитие некоторых областей, в частности генетики. Интересны воспоминания о деловых контактах с руководителями государства, крупнейшими учеными нашей страны и зарубежных стран.
Вопреки сложившейся традиции излагать историю науки как историю идей и теорий автор из ГДР В. Штрубе дает оригинальную трактовку развития науки: он стремится показать, как открытия, изобретения, накопление новых знаний и становление научной химии способствовали развитию общества. В данном томе рассматривается развитие химии в период от промышленной революции до начала XX в. Для широкого круга читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Настоящее учебное пособие предназначено для абитуриентов, сдающих ЕГЭ в 2017 и последующих годах. В связи с обновлением большинства учебных пособий и учебников по общей и неорганической химии выпуск учебного пособия такого типа актуален. Данное пособие отличается от аналогичных изданий, например тем, что в конце его приводится как бы краткая аннотация лекций, что помогает, с одной стороны, запоминанию, с другой – помогает понять историю возникновения понятий и законов и внутри предметной связи. В этой книге есть решения типовых задач (тесты 27-29), что несомненно повысит качество преподавания.