Путеводитель для влюбленных в математику - [38]

Шрифт
Интервал

Если корень уравнения отрицательный, речь идет об описанной окружности; в случае положительного корня речь идет о вписанной окружности. А теперь другой вопрос: что означает нулевая кривизна? Сама формулировка подсказывает, что «окружность» с нулевой кривизной представляет собой прямую линию[165].

Решение Декарта в 1930-е годы заново открыл Фредерик Содди[166]. Он был настолько поражен элегантностью формулы, что сочинил стихотворение под названием «Прицельный поцелуй». Вот вторая строфа, где зарифмована формула (*):

Окружности четыре
Сошлись для поцелуя,
Пригожая малютка
Скривилась больше всех.
А если единичку
На радиус делю я,
То это будет кривизна.
Невиданный успех!
Евклид буквально онемел…
Дружок, скорей берись за мел:
Коль нулевая кривизна,
То линия прямая;
Коль минус перед кривизной,
Целуйся, обнимая.
«Сложи криви́зны, возведи
В квадрат всю эту сумму,
И на два ну-ка подели!» –
Кричу я тугодуму. –
«Теперь все это приравняй
К величине другой:
Криви́зны возведи в квадрат,
Сплюсуй, мой дорогой».
Две суммы в точности равны,
И все от радости пьяны:
Целуются, милуются,
Собой не налюбуются!

Есть еще один вариант поцелуя четырех окружностей. На сей раз они будут касаться друг друга попарно, выстроившись в кольцо. Иными словами, касаются первая и вторая окружности, вторая и третья, третья и четвертая, четвертая и первая. Итого мы имеем четыре точки соприкосновения.

Удивительно, но факт: эти четыре точки всегда будут лежать на другой окружности, пятой по счету.


Теорема Паскаля о шестиугольнике

Я завершу эту главу теоремой, доказанной Блезом Паскалем[167].

Расставим на окружности шесть точек: A, B, C, D, E и F. Соединим их отрезками, чтобы возник перекрученный шестиугольник:

ADBFCEA.

Теорема Паскаля говорит о том, что три точки, в которых пересекаются пары отрезков DB и CE, AD и FC, BF и EA (на чертеже они отмечены буквами X, Y, Z соответственно) всегда будут лежать на одной прямой!



Отмечу, что теорема Паскаля верна и в случае шести точек, лежащих на эллипсе[168].

Предположим, все круги имеют радиус 1. Центры четырех соседних кругов расположены на вершинах ромба со стороной 2.

Ромб состоит из двух равносторонних треугольников. Высота равностороннего треугольника[169] со стороной 2 равна √3. Таким образом, площадь треугольников равна

Площадь ромба вдвое больше: 2√3

Теперь давайте подумаем, какой процент площадей кругов покрывает ромб. Два круга покрыты на 1/6 и еще два – на 1/3. Все вместе дает площадь одного круга с радиусом 1, то есть π.

Соотношение покрытой кругами площади к общей площади равно

Глава 16

Платоновы тела

Равносторонний треугольник – это геометрическая фигура, состоящая из трех равных между собой отрезков, пересекающихся под углом 60°. Квадрат – фигура, состоящая из четырех равных между собой отрезков, пересекающихся под углом 90°. Это примеры правильных многоугольников – фигур, состоящих из равных между собой прямых отрезков, пересекающихся под равными углами. На рисунке изображен правильный семиугольник (гептагон[170]).



Некоторые дорожные знаки (например, знак «Движение без остановки запрещено») имеют форму правильного восьмиугольника (октагона).

Задумавшись на секунду, мы поймем, что правильных многоугольников бесконечно много: существует правильный n-угольник при любом натуральном n ≥ 3.

Мы вычерчиваем многоугольники на плоскости. А как насчет родственных им фигур в трехмерном пространстве?

Многогранники

«Перешедшие на следующий уровень» многоугольники в трехмерном пространстве называют многогранниками (или полиэдрами). Многогранник – это пространственная фигура с плоскими гранями, каждая из которых представляет собой многоугольник. Среди наиболее известных многогранников – треугольная призма и пирамида с квадратным основанием. Треугольная призма состоит из трех прямоугольников и двух треугольников. Пирамида состоит из четырех треугольников и одного квадрата.



Как расширить идею правильного многоугольника на пространственные фигуры? Правильный многогранник имеет конгруэнтные[171] грани и углы.

Расширение до трех измерений требует, чтобы все части многогранника были конгруэнтны между собой. Таким образом:

– все ребра многогранника равны между собой;

– все углы, под которыми пересекаются два ребра, равны между собой;

– в каждой вершине пересекается одинаковое число ребер;

– все углы между соседними гранями равны между собой.

Из первых двух условий следует, что все грани правильного многогранника конгруэнтны и представляют собой правильные многоугольники.

Наверное, самый известный правильный многогранник – это куб, состоящий из шести граней, каждая из которых представляет собой правильный четырехугольник (квадрат). На рисунке изображены еще четыре правильных многогранника.



• Тетраэдр состоит из 4 равных между собой треугольников.

• Октаэдр состоит из 8 равных между собой треугольников (вообразите, что вы склеили две пирамиды с квадратным основанием).

• Додекаэдр образован 12 правильными пятиугольниками.

• Икосаэдр состоит из 20 равносторонних треугольников.

На рисунке изображены развертки правильных многогранников. Вы можете перерисовать эти фигуры, вырезать их и склеить бумажные модели. В продаже бывают наборы для изготовления правильных многогранников.


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.