Путеводитель для влюбленных в математику - [38]
Если корень уравнения отрицательный, речь идет об описанной окружности; в случае положительного корня речь идет о вписанной окружности. А теперь другой вопрос: что означает нулевая кривизна? Сама формулировка подсказывает, что «окружность» с нулевой кривизной представляет собой прямую линию[165].
Решение Декарта в 1930-е годы заново открыл Фредерик Содди[166]. Он был настолько поражен элегантностью формулы, что сочинил стихотворение под названием «Прицельный поцелуй». Вот вторая строфа, где зарифмована формула (*):
Есть еще один вариант поцелуя четырех окружностей. На сей раз они будут касаться друг друга попарно, выстроившись в кольцо. Иными словами, касаются первая и вторая окружности, вторая и третья, третья и четвертая, четвертая и первая. Итого мы имеем четыре точки соприкосновения.
Удивительно, но факт: эти четыре точки всегда будут лежать на другой окружности, пятой по счету.
Я завершу эту главу теоремой, доказанной Блезом Паскалем[167].
Расставим на окружности шесть точек: A, B, C, D, E и F. Соединим их отрезками, чтобы возник перекрученный шестиугольник:
A → D → B → F → C → E → A.
Теорема Паскаля говорит о том, что три точки, в которых пересекаются пары отрезков DB и CE, AD и FC, BF и EA (на чертеже они отмечены буквами X, Y, Z соответственно) всегда будут лежать на одной прямой!
Отмечу, что теорема Паскаля верна и в случае шести точек, лежащих на эллипсе[168].
Предположим, все круги имеют радиус 1. Центры четырех соседних кругов расположены на вершинах ромба со стороной 2.
Ромб состоит из двух равносторонних треугольников. Высота равностороннего треугольника[169] со стороной 2 равна √3. Таким образом, площадь треугольников равна
Площадь ромба вдвое больше: 2√3
Теперь давайте подумаем, какой процент площадей кругов покрывает ромб. Два круга покрыты на 1/6 и еще два – на 1/3. Все вместе дает площадь одного круга с радиусом 1, то есть π.
Соотношение покрытой кругами площади к общей площади равно
Глава 16
Платоновы тела
Равносторонний треугольник – это геометрическая фигура, состоящая из трех равных между собой отрезков, пересекающихся под углом 60°. Квадрат – фигура, состоящая из четырех равных между собой отрезков, пересекающихся под углом 90°. Это примеры правильных многоугольников – фигур, состоящих из равных между собой прямых отрезков, пересекающихся под равными углами. На рисунке изображен правильный семиугольник (гептагон[170]).
Некоторые дорожные знаки (например, знак «Движение без остановки запрещено») имеют форму правильного восьмиугольника (октагона).
Задумавшись на секунду, мы поймем, что правильных многоугольников бесконечно много: существует правильный n-угольник при любом натуральном n ≥ 3.
Мы вычерчиваем многоугольники на плоскости. А как насчет родственных им фигур в трехмерном пространстве?
«Перешедшие на следующий уровень» многоугольники в трехмерном пространстве называют многогранниками (или полиэдрами). Многогранник – это пространственная фигура с плоскими гранями, каждая из которых представляет собой многоугольник. Среди наиболее известных многогранников – треугольная призма и пирамида с квадратным основанием. Треугольная призма состоит из трех прямоугольников и двух треугольников. Пирамида состоит из четырех треугольников и одного квадрата.
Как расширить идею правильного многоугольника на пространственные фигуры? Правильный многогранник имеет конгруэнтные[171] грани и углы.
Расширение до трех измерений требует, чтобы все части многогранника были конгруэнтны между собой. Таким образом:
– все ребра многогранника равны между собой;
– все углы, под которыми пересекаются два ребра, равны между собой;
– в каждой вершине пересекается одинаковое число ребер;
– все углы между соседними гранями равны между собой.
Из первых двух условий следует, что все грани правильного многогранника конгруэнтны и представляют собой правильные многоугольники.
Наверное, самый известный правильный многогранник – это куб, состоящий из шести граней, каждая из которых представляет собой правильный четырехугольник (квадрат). На рисунке изображены еще четыре правильных многогранника.
• Тетраэдр состоит из 4 равных между собой треугольников.
• Октаэдр состоит из 8 равных между собой треугольников (вообразите, что вы склеили две пирамиды с квадратным основанием).
• Додекаэдр образован 12 правильными пятиугольниками.
• Икосаэдр состоит из 20 равносторонних треугольников.
На рисунке изображены развертки правильных многогранников. Вы можете перерисовать эти фигуры, вырезать их и склеить бумажные модели. В продаже бывают наборы для изготовления правильных многогранников.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.