Путеводитель для влюбленных в математику - [25]
Если мы сложим все эти 20 чисел, результат будет равен удвоенному T>10. Но мы не станем сразу суммировать числа по горизонтали. Для начала сложим их попарно по вертикали:
В нижней строке все элементы равны 11, потому ответ прост[103]: 11 × 10 = 110. Теперь поделим этот результат пополам: T>10 = 110 / 2 = 55.
Как мы будем действовать в общем случае? Для вычисления T>N запишем целые числа от 1 до N в возрастающем и убывающем порядке и сложим пару в каждом столбце:
В нижней строке N элементов, каждый равен N + 1; таким образом, их сумма равна N × (N + 1). Поскольку это «двойная порция» T>N, получается:
Для вычисления T>100 нет необходимости складывать сотню чисел. Нужно лишь посчитать:
(100 × 101) / 2 = 5050.
Вот и ответ.
Существует ли простая, элегантная формула вычисления факториала? Увы, нет. Однако есть формула для вычисления приближенного значения факториала, выведенная Джеймсом Стирлингом[104]:
Эта формула включает два замечательных числа, о которых шла речь в предыдущих главах: π ≈ 3,14159, представляющее собой частное от деления длины окружности на ее радиус (см. главу 6), и число Эйлера e ≈ 2,71828 (см. главу 7).
Точность формулы Стирлинга возрастает при больших значениях N. Например, для N = 10 факториал 10! = 3 628 800, а вычисления по формуле (C) дают 3 598 695,6187. Погрешность – всего около 0,8 %.
Для N = 20 мы получаем:
20! = 2 432 902 008 176 640 000.
По формуле (C):
20! = 2 422 786 846 761 133 393,6839075390.
Погрешность равна около 0,4 %. Если мы перепрыгнем к N = 1000, погрешность составит менее 0,01 %.
Число 145 называют факторионом, потому что оно обладает волшебным свойством. Если мы сложим факториалы составляющих его цифр, то получим то же самое число:
1! + 4! + 5! = 1 + 24 + 120 = 145.
Числа 1 и 2 тоже являются факторионами (но не ноль, как мы увидим чуть позже). Существует всего четыре факториона. Попробуйте самостоятельно найти четвертый.
Это сложновато без компьютерной программы. Ответ приведен в конце главы.
Многие испытывают необоримое желание ответить: «0! равен нулю!» (Второй восклицательный знак всего лишь подчеркивает экспрессивность этой фразы.) Первый множитель в N! равен N, а умножение на ноль дает ноль. Однако математики договорились, что 0! = 1, и я завершу главу разъяснением этого факта.
В главе 1 мы обсудили концепцию пустого произведения – умножения при отсутствии элементов. Факториал нуля – пример пустого произведения. Для любого N факториал представляет собой результат перемножения N элементов. Это ясно для положительных значений N, но это верно и для N = 0. По определению, при подсчете N! мы перемножаем все целые числа от 1 до N. В случае N = 0 таких чисел просто-напросто нет, и произведение оказывается пустым. По договоренности, пустое произведение равно 1.
А вот еще одно обоснование того, почему 0! = 1. При подстановке N = 1 в формулу (B) мы получаем:
N! = N × (N – 1)! => 1! = 1 × 0!
Поскольку 1! = 1, мы получаем 0! = 1.
А теперь давайте вернемся к расстановке книг на полке. Сколькими способами можно расставить на полке ноль книг? Есть один-единственный вариант: оставить полку пустой.
Глава 11
Закон Бенфорда
Для нас очевидно, что все цифры сотворены равными. Нет, мы не имеем в виду «равными друг другу» – разумеется, нет! Но внутри нас теплится вера в то, что все десять цифр, от 0 до 9, играют одинаковые роли в мире чисел.
Печальная правда заключается в том, что числа могут быть такими же нескромными, как люди: они все стремятся к первенству. Представьте, что вам приглянулась вещь стоимостью 43,52 доллара. Какая из цифр кажется вам более значимой? Важнее всего для вас цифра четыре, а двойка на конце не играет почти никакой роли. Вы встревожитесь, если четверка вдруг изменится на девятку, а если изменится двойка, вряд ли вас это сильно взволнует.
Тот, кто ждет от Вселенной справедливости, должен верить, что у всех цифр одинаковые шансы сыграть значимую роль, – но бедный, бедный нолик! Он не становится первой значащей цифрой, честь выпала на долю других[105]. Все они стремятся быть значительней остальных настолько часто, насколько это возможно.
Мы верим, что цифры от 1 до 9 участвуют в математике на равных правах и каждая начинает одну девятую часть всех существующих чисел (примерно 11 %). Разумеется, не может быть большего количества чисел, начинающихся с двойки, чем с пятерки.
Ведь так?
Утверждение о том, что все цифры от 1 до 9 равно представлены в качестве первой значащей цифры, приобретает смысл, если иметь в виду определенный диапазон чисел: скажем, от 1 до 999 999. В этом случае все цифры от 1 до 9 одинаково часто занимают место первой значащей цифры.
Разумеется, на результат влияет, какой именно диапазон мы выбрали. Если мы посмотрим на другой ряд чисел, скажем от 1 до 19, то обнаружим, что здесь все цифры от 2 до 9 занимают первую позицию всего единожды, в то время как 1 становится первой значащей цифрой в 11 случаях.
Ради беспристрастности давайте возьмем какие-нибудь величины из внешнего мира. Мы должны быть аккуратными и не искать числа, сконцентрированные в узком диапазоне. Поэтому мы не станем брать такой параметр, как рост взрослого человека
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.