Путеводитель для влюбленных в математику - [27]

Шрифт
Интервал

между 1 и 10 мы обозначим f(m) долю чисел, чья мантисса меньше m.

Например, f(2) – доля чисел, начинающихся на цифру 1. Величина f(3) означает долю чисел с начальной цифрой 1 и 2. Такая запись поможет понять, как возрастают частоты в законе Бенфорда.

Как использовать такую форму записи для обозначения доли измерений с начальной цифрой, скажем, 4?

• Заметим, что запись f(4) не означает, что начальная цифра равна 4. Это может быть также 1, 2 или 3.

• Точно так же запись f(5) означает, что первые цифры могут быть 1, 2, 3, 4.

• Чтобы выяснить, сколько чисел начинается на цифру 4, вычтем одну величину из другой: f(5) – f(4). Тогда мы исключим числа с начальной цифрой 1, 2, 3.

Есть две особые величины: чему равно f(1) и f(10)? Подумайте минуту, прежде чем читать дальше.

Вспомним: f(m) обозначает долю чисел с мантиссой меньше m. В то же время 1 ≤ m < 10. Что из этого следует?

• Нет ни одного числа с мантиссой меньше 1. Таким образом, f(1) = 0.

• Мантиссы всех чисел меньше 10. Таким образом, f(10) = 1 (или, если вам угодно, 100 %).

Между этими границами величина f(m) возрастает. Чем больше чисел с мантиссой меньше m, тем больше f(m).

Следующий шаг – понять, как f(m) зависит от m. Но вначале мы рассмотрим общий случай перехода из одной единицы измерения в другую.

Ярды или футы[117]?

Мы собрали тысячи измерений длин в километрах и увидели закон распределения первых цифр. Если мы переведем километры в мили, распределение не изменится. Измерения внутреннего валового продукта в долларах США дают примерно такую же частотность первых цифр. Ничего не изменится, если мы будем измерять ВВП в евро (или британских фунтах, или российских рублях). Но давайте присмотримся к переводу ярдов в футы.

Предположим, мы измеряем огромное количество расстояний в ярдах и в футах и изучаем распределение первых цифр. Как много величин имеют первую значащую цифру 2? Это множество включает и 2,1, и 28, и 0,213, и 299,8 ярда. В обозначениях, которые мы приняли в предыдущем разделе, доля величин такого рода по отношению ко всем измерениям[118] равна f(3) – f(2).

А теперь переведем наши измерения в футы. Иными словами, просто умножим всё на 3. 2,1 ярда равны 6,3 фута. Измерения в ярдах с первой значащей цифрой 2 превратятся в измерения с первой значащей цифрой от 6 до 9, не включая 9. Вы удивлены?

Вначале может показаться, что, если первая значащая цифра величин в ярдах равна 2, первая значащая цифра величин в футах будет равна 6. Это не так: 2,8 ярда равны 8,4 фута. Если мантисса измерений в ярдах находится в пределах от 2 до 3 (не включая 3), мантисса тех же измерений в футах будет в пределах от 6 до 9 (не включая 9).

Какая доля измерений имеет первую значащую цифру 6, 7 или 8? Ответ[119]: f(9) – f(6).

Близится кульминация: мы имеем дело с одними и теми же измерениями в разных единицах длины, поэтому доля измерений в ярдах с мантиссой 2 будет равна доле измерений в футах с мантиссой 6, 7 или 8. Иными словами, f(3) – f(2) в ярдах равно f(9) – f(6) в футах. Посмотрите на рисунок. Оба прямоугольника символизируют всю совокупность наших измерений: первый прямоугольник – в ярдах, второй прямоугольник – в футах. Серая область в первом прямоугольнике обозначает измерения с мантиссой 2. Соответствующая область во втором прямоугольнике обозначает измерения с мантиссой 6, 7 или 8.



Важно понимать, что обе закрашенные области идентичны! Так что доля измерений в ярдах с мантиссой 2 равна доле измерений в футах с мантиссой 6, 7 или 8.

Рассмотрим более общий случай. Вообразим, что мы собрали множество измерений и хотим выяснить, сколько из них имеют мантиссу меньше определенного числа a. Доля величин, удовлетворяющих этому условию, равна f(a).

Мы переводим результаты в другие единицы измерения. Пусть коэффициент будет равен числу b[120]. Иными словами, если длина объекта в одних единицах измерения равна 23,5, в других она будет равна 23,5 × b.

Напомню, что f(a) равно доле величин с мантиссой от 1 до a, не включая a. Те же величины в других единицах имеют мантиссу строго меньше ab[121]. Их доля равна f(ab).

На языке формул тезис о равенстве долей величин с мантиссой меньше a в одних единицах и с мантиссой меньше ab в других единицах выглядит так:

f(a) = f(ab) – f(b).

Или:

f(ab) = f(a) + f(b). (*)

Новый вопрос: какого рода функция удовлетворяет этому правилу и условиям f(1) = 0 и f(10) = 1?

Что дают логарифмы[122]?

Некоторые математические операции можно проделать наоборот. Например, мы возводим в квадрат какое-нибудь число: 6² = 36. А теперь проделываем обратную операцию – извлекаем квадратный корень:

Для положительных чисел операции возведения в квадрат и извлечения квадратного корня обратны друг другу. Операция, обратная возведению в степень, называется извлечением логарифма.

Например, 10⁴ = 10 000. Мы проделываем наоборот операцию возведения в степень и применяем логарифмическую функцию[123]:

lg(10 000) = 4.

Можно воспринимать логарифмическую функцию как ответ на вопрос: «В какую степень возводить?» В какую степень нужно возвести 10, чтобы получить некое число? Скажем, какая степень 10 дает 1000? Поскольку 1000 = 10 × 10 × 10 = 10³, ответ равен 3. Иными словами, lg(1000) = 3.


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.