Путеводитель для влюбленных в математику - [23]
На какой вопрос по комбинаторике уравнение (*) дает два верных ответа? Эта головоломка похожа на те, что встречаются в шоу Jeopardy![98], где участники должны формулировать вопрос, заранее зная правильный ответ.
Правая часть выглядит проще, поэтому начнем с нее. Ответ: F>n +>2 – 1. Каков вопрос? Если бы ответ был равен просто F>n +>2, мы с легкостью сформулировали бы вопрос: сколькими способами можно облицевать прямоугольник 1 × (n + 2) с помощью квадратов и костяшек домино?
Это почти то, что нужно, но ответ меньше на единицу. Попробуем мягко поменять вопрос и уменьшить ответ. Уберем один вариант облицовки и пересчитаем оставшиеся. Сложность состоит в том, чтобы найти один вариант, который кардинально отличается от остальных. Есть ли такой?
Каждый способ облицовки подразумевает использование квадратов и/или домино. Только квадраты задействованы в единственном варианте, в прочих есть хотя бы одна костяшка домино. Возьмем это за основу нового вопроса.
Вопрос: Сколько существует вариантов облицовки квадратами и костяшками домино прямоугольной рамки 1 × (n + 2), включающих по меньшей мере одну костяшку домино?
Сейчас мы найдем два ответа на этот вопрос. Так как оба будут верны, между числами мы сможем уверенно поставить знак равенства.
Один из ответов мы уже обсуждали. Есть F>n + 2 вариантов укладки. Только один из них подразумевает использование исключительно квадратов, без домино.
Таким образом, ответ № 1 на наш вопрос таков: F>n + 2 – 1.
Второй ответ должен быть – я надеюсь – левой частью уравнения (*). Посмотрим, как это работает.
Нужно пересчитать варианты заполнения рамки, включающие хотя бы одну костяшку домино. Давайте подумаем, где будет расположена самая первая костяшка. Есть n + 2 позиций, и первая костяшка может располагаться в позициях от 1 до n + 1.
Рассмотрим случай n = 4. Мы ищем варианты заполнения рамки 1 × 6, задействующие хотя бы одну костяшку домино. Мы знаем ответ: F>6 – 1 = 13 – 1 = 12, но нам необходимо получить его иным путем.
Первая костяшка домино может занимать следующие позиции:
Первая колонка демонстрирует случай, когда костяшка находится на первой позиции, вторая – когда костяшка на второй, и т. д.
Сколько вариантов в каждой колонке?
В первой колонке – пять вариантов. Если отбросить домино слева, мы получим ровно F>4 = 5 вариантов для прямоугольника 1 × 4.
Во второй колонке – три варианта. Отбросим домино и квадрат слева. Мы получим F>3 = 3 варианта для прямоугольника 1 × 3.
Аналогично для других колонок. Вот что мы обнаружили:
Таким образом, количество способов замостить квадратами и домино (хотя бы одной костяшкой) прямоугольную рамку 1 × 6 равно
F>4 + F>3 + F>2 + F>1 + F>0 = 12.
Вывод:
F>0 + F>1 + F>2 + F>3 + F>4 = 12 = F>6 – 1.
Рассмотрим общий случай. Нам дана рамка длиной n + 2. Сколько есть вариантов ее заполнения, при которых первая костяшка домино находится на некой позиции k? В этом случае первые k – 1 позиций заняты квадратами. Таким образом, в общей сложности занята k + 1 позиция[99]. Оставшиеся (n + 2) – (k + 1) = n – k + 1 можно заполнить любыми способами. Это дает F>n – k +>1 вариантов. Построим диаграмму:
Если k меняется от 1 до n + 1, величина n – k + 1 меняется от 0 до n. Таким образом, количество вариантов заполнения нашей рамки с использованием хотя бы одной костяшки домино равно
F>n + F>n>– 1 + … + F>1 + F>0.
Если поставить слагаемые в обратном порядке, мы получим левую часть выражения (*). Таким образом, мы нашли второй ответ на поставленный вопрос:
F>0 + F>1 + … + F>n.
Итак, у нас есть два ответа на вопрос. Величины, полученные с помощью двух выведенных нами формул, совпадают, и тождество (*) доказано.
Сложение двух следующих друг за другом чисел Фибоначчи дает очередное число Фибоначчи. В этом разделе мы затронем вопрос поинтереснее: что будет, если мы поделим число Фибоначчи на предшествующее ему в ряду? Посчитаем соотношение
Для возрастающих значений k. В таблице вы можете видеть соотношения отЧем больше становятся числа Фибоначчи, тем ближе соотношение
к константе, примерно равной 1,61803.Это число – вы будете удивлены – достаточно известное, и если вы введете его в поисковую систему, вывалится уйма страниц о золотом сечении. Что это такое?
Соотношение соседних чисел Фибоначчи не одинаково. Однако оно почти одинаково, если числа достаточно велики. Давайте найдем формулу для числа 1,61803 и для этого на время будем считать, что все соотношения одинаковы. Введем обозначение x:
Это значит, что F>k>+ 1 = xF>k, F>k>+ 2 = xF>k>+ 1 и т. д. Можно переформулировать:
F>k>+ 2 = xF>k>+ 1 = x²F>k.
Но мы же знаем, что F>k +>2 = F>k>+ 1 + F>k. Таким образом,
x²F>k = xF>k + F>k.
Если мы поделим обе части на F>k и перегруппируем слагаемые, то получим квадратное уравнение:
x² – x – 1 = 0.
Оно имеет два решения:
Соотношение должно быть положительным. И вот мы получили знакомое нам число. Обычно для обозначения золотого сечения используют греческую букву ϕ (фи):
Мы уже приметили, что соотношение соседних чисел Фибоначчи приближается (стремится) к ϕ. Это замечательно. Это дает нам еще один способ вычислять приблизительные значения чисел Фибоначчи.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.