Путеводитель для влюбленных в математику - [18]
Оказывается, здесь интуиция нас подводит.
В математике все сложное объяснимо через простое. Если быть достаточно скрупулезным, то комплексные числа можно определить с помощью действительных, действительные – с помощью рациональных, рациональные – с помощью целых и т. д. Все здание математики покоится на фундаментальной концепции множества.
Множество – это просто набор объектов. Например, {1, 2, 5} – множество, состоящее из трех чисел[81]. Оно совпадает с множеством {1, 5, 2}, потому что порядок чисел в данном случае не важен. Кроме того, объект либо входит, либо не входит во множество. Входить во множество два раза нельзя. Множество {1, 1, 2, 5} совпадает с множеством {1, 2, 5}, второе появление числа 1 избыточно.
Если элемент входит в некоторое множество, математики используют значок ∈. Например, выражение 2∈ {1, 2, 5} следует понимать так: «Число 2 входит во множество, состоящие из чисел 1, 2, 5». Перечеркнутый значок показывает, что элемент не входит во множество; например: 3∉ {1, 2, 5}.
Число элементов, входящих во множество A, мы обозначаем |A|. Например, |{1, 2, 5}| = 3. Число |A| называют мощностью множества A.
Мощность такого рода множеств, как {1, 2, 5}, конечна. Однако мощность множества ℤ (все целые числа) бесконечна, как и мощность множества ℝ (все действительные числа).
Как сравнить размеры двух множеств? Простейший способ – пересчитать их элементы. Например, и у множества {1, 2, 5}, и у множества {3, 8, 11} мощность равна 3, стало быть, они равновелики.
Другой способ установить, что мощность множеств совпадает, – построить взаимно однозначное соответствие между их элементами[82]. Иными словами, нам не обязательно перебирать все элементы, достаточно ввести правило, по которому мы сопоставляем элемент из одного множества с каким-либо элементом из второго. Вот взаимно однозначное соответствие между множествами {1, 2, 5} и {3, 8, 11}:
1 ↔ 3,
2 ↔ 8,
5 ↔ 11.
Впрочем, когда элементов мало, поиски взаимно однозначного соответствия обременительны и не приносят большой пользы.
Разберем более запутанный пример. Представьте себе, что в некоторый клуб входит семь человек (для удобства будем называть их по номерам: 1, 2, 3, …, 7).
Клубу разрешили послать трех членов на ежегодную национальную конференцию. Есть много способов выбрать трех человек из семи. Пусть A – множество всех возможных групп по три человека:
A = {123, 124, 125, …, 567}.
Здесь мы под «123» подразумеваем, что на конференцию поедут члены клуба под номерами 1, 2 и 3.
На следующий год членов клуба оповещают, что они могут отправить на конференцию четырех человек. Пусть B – множество всех групп по четыре человека:
B = {1234, 1235, 1236, …, 4567}.
Итак, A – множество групп по три человека, B – множество групп по четыре человека.
Совпадают ли их мощности?
Если внимательно пересчитать все элементы, выяснится, что мощности этих множеств совпадают. Но выписывать все возможности одну за одной – нудная и не застрахованная от ошибок работа[83].
Гораздо проще показать, что эти множества равновелики, если найти взаимно однозначное соответствие между их элементами. В голову приходит следующая мысль. Допустим, члены клуба решают, что на вторую конференцию больше не поедут те, кто побывал там в первый год. Тогда каждую группу по три человека из первого множества можно сопоставить с другой группой по четыре человека из второго множества. Например, если 1, 4 и 5 поехали на конференцию в первый год, то на следующий год поедут 2, 3, 6 и 7. Или: 145 ↔ 2367.
Выпишем все возможности:
123 ↔ 4567
124 ↔ 3567
125 ↔ 3467
…
356 ↔ 1257
…
567 ↔ 1234
Это взаимно однозначное соответствие показывает, что A и B равновелики.
Вы можете выписать все элементы множеств полностью и убедиться, что их количество совпадает (хотя взаимно однозначное соответствие избавляет нас от этой нудной работы). Перечень всех элементов вы найдете в конце главы.
Подытожим: у нас есть два способа доказать, что конечные множества имеют равные мощности: пересчитать их элементы или найти между ними взаимно однозначное соответствие. Однако, если множество содержит бесконечно много элементов, первый метод перестает работать: ни одно число не подходит на роль мощности ℝ (множество действительных чисел). Таким образом, нам остается лишь найти взаимно однозначное соответствие, чтобы показать, что мощности двух бесконечных множеств совпадают. Вот пример.
Как мы помним, буквой ℤ обозначается множество целых чисел:
ℤ = {…, –3, –2, –1, 0, 1, 2, 3, …}.
Введем обозначение ℤ>+ для множества положительных целых чисел[84]:
ℤ>+ = {1, 2, 3, 4, …}.
Совпадают ли мощности ℤ и ℤ>+?
Есть искушение сказать, что ℤ содержит вдвое больше элементов, чем ℤ>+ и потому «в два раза более бесконечно». Однако мощности данных множеств совпадают. Почему? Мы покажем это с помощью взаимно однозначного соответствия.
Составим два перечня. Первый будет включать все положительные целые числа, а второй – вообще все целые числа, и положительные, и отрицательные, но в необычном порядке. Сопоставляя числа в первом и втором перечне, мы выстроим взаимно однозначное соответствие. Это показано в таблице
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.