Путешествие по Карликании и Аль-Джебре - [4]

Шрифт
Интервал

Многие дружелюбно кивали нам в знак приветствия, а иногда и пожимали руки — словом, вели себя как добрые знакомые.

По обе стороны проспекта тянулись длинные здания со множеством вертящихся дверей. Карликане то и дело ныряли в них и тотчас же возвращались с небольшими чемоданчиками, в которых что-то мелодично позвякивало.

На каждом шагу попадались вывески с крупной надписью:

СКЛАД ДЕЙСТВУЮЩИХ ЗНАКОВ

Под этой надписью была другая, поменьше:

ЭКОНОМЬТЕ РАСХОД КРЕСТИКОВ!

— Что это за крестики такие? — вслух недоумевал Сева. — И почему это их надо экономить?

Но вот из одной вертящейся двери выпорхнула школьница с тремя смешными косичками. Это была маленькая Тройка.

— Троечка, что это у вас в чемодане? — спросил у неё Сева.

— Здравствуйте! — ответила воспитанная Тройка.

— Ах да, я совершенно забыл, — спохватился Сева. — Конечно, здравствуйте! Не скажете ли вы, что это звенит у вас в чемодане?

— Действующие знаки. — Тройка указала на вывеску: — Тут же всё написано. Разве вы не умеете читать?

— Умею, но не понимаю, что это за знаки и как они действуют?

— Ах нет, нет. Они не могут сами действовать. Они только помогают другим производить различные действия.

— Театральные действия? — сострил Сева.

— Скажете тоже! — Тройка энергично замотала косичками. — Не театральные, а арифметические!

— Понимаю: сложение, вычитание, умножение и деление.

— И многие другие.

— Какие же другие? — удивилась Таня. — Кроме этих четырёх, других действий не бывает.

— Что вы! — воскликнула Тройка. — Кроме арифметических, могут быть и совсем другие действия — например, алгебраические.

— Не знаю таких, — пожала плечами Таня. — Никогда даже не слышала.

— Неужели?! — Тройка изумлённо всплеснула руками.

Трах! Это упал на землю чемоданчик, и всё его содержимое высыпалось наружу. Мы поспешно бросились подбирать.

Чего там только не было! И точки, и запятые, чёрточки маленькие, чёрточки большие, крестики, скобки круглые, скобки квадратные, скобки фигурные и ещё много-много совсем непонятных знаков.

— Ой, какая я неловкая! — огорчилась Тройка. — Пожалуйста, осторожнее. Это очень важные знаки. Вот эта маленькая чёрточка, например. Если забыть поставить её между двумя числами, то никто и не догадается, что из одного числа нужно вычесть другое.

— Это минус! — выпалил Сева.

— Разумеется! — обрадовалась Тройка. — А вот если я две такие чёрточки помещу одну над другой, это уже будет не два минуса, а…

— …знак равенства, — не удержался Сева.

— Так вы же всё знаете! Я думаю, дальше вам и объяснять не нужно. Вот, например, этот крестик…

— Это плюс, — сказал Сева. — Он нужен для сложения. А вот почему у вас висит объявление «Экономьте расход крестиков!»? Неужели для того, чтобы поменьше складывали?

— Ой, что вы! — засмеялась Тройка. — Складывайте на здоровье, сколько душе угодно! Дело в том, что крестик употребляется не только как знак сложения, но и как знак умножения. Стоит только поставить его на обе ножки — вот так: × — Поэтому крестиков у нас не хватает, и мы решили заменить их точками.

— Но такую точку легко спутать со знаком препинания!

— Нет, нет! — Тройка замахала руками. — Это же очень просто: наша точка ставится чуточку выше, чем знак препинания.

— А это что такое? — спросил Сева, вытащив из чемоданчика забавную фигурку. — Сачок для ловли бабочек?

— Какой вы смешной! — прыснула Тройка. — Это тоже знак. Он применяется при извлечении корней из чисел. И зовут его радикал.

— Выходит, у чисел есть корни, такие же, как у деревьев? — обрадовался Сева.

— Какой ужас! — воскликнула Тройка. — Вы всё понимаете буквально.

— Но что же это всё-таки за корни?

— Позвольте мне на ваш вопрос ответить вопросом: сколько будет трижды три?

— Разумеется, девять!

— Великолепно! Сами того не замечая, вы произвели важное и прекрасное действие: возвели тройку в степень!

— Нет, — возразил Сева, — я просто умножил тройку саму на себя.

— Вот именно. Но это же и есть возведение в степень. И притом — во вторую степень.

— А разве можно ещё и в третью? — спросила Таня.

— Конечно. Для этого надо девять ещё раз умножить на три.

— Значит, три, помноженное на три и ещё раз на три, — это и есть третья степень трёх? — сказала Таня.

— Совершенно верно. Поэтому третья степень трёх равна…

— …двадцати семи, — закончила Таня.

— Но ведь так можно поступать без конца! — сказал Сева.

— Как вы это правильно заметили! — восхитилась Тройка. — Именно без конца! И тогда будут получаться четвёртая, пятая, шестая степени…

— Любопытно.

— Но вернёмся к началу нашего вопроса, — продолжала Тройка. — Вы спросили, что такое радикал? Начнём от печки. Трижды три — девять. А теперь я задам вам тот же вопрос с конца: какое число нужно возвести во вторую степень, чтобы получить девять?

— Три, — сразу ответил Сева.

— Видите, по девятке мы узнали, какое число было возведено во вторую степень. И число это оказалось тройкой.

— Вот это действие и называется извлечением корня? — спросила Таня.

— Ну да! — обрадовалась Тройка. — И обозначается оно радикалом.

— А ты думал, им ловят бабочек, — съехидничала Таня.

Сева торжественно поднял руку:

— Клянусь, теперь я всегда буду помнить, чему равен корень из девяти.


Еще от автора Владимир Артурович Левшин
Три дня в Карликании

Рассказ в веселой и доступной форме детям об арифметике.


Магистр Рассеянных Наук

В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра».


Стол находок утерянных чисел

Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку.


В лабиринте чисел

Заблудиться в лабиринте чисел очень просто. Но если вашим проводником согласится стать сама многоуважаемая Арифметика, путешествие удастся на славу. Каждая остановка, а их будет тридцать две (по числу букв алфавита) подарит вам незабываемые впечатления, а задачи, которые Арифметика иногда будет подкидывать своим спутникам, внесут ещё большее разнообразие в этот и без того прихотливый маршрут. Замечательная книга о приключениях мальчика Чита в Лабиринте Чисел и о его проводнице — Арифметике. В увлекательной форме знакомит детей со многими математическими и логическими понятиями.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Черная маска из Аль-Джебры

«Чёрная Маска из Аль-Джебры» — продолжение сказки «Три дня в Карликании», вышедшей в 1964 году в издательстве «Детская литература».Действие сказки происходит в соседнем с Карликанией государстве Аль-Джебре.Житель Арифметического государства Нулик случайно очутился у входа в таинственную пещеру. Здесь он увидел странное существо в чёрной маске. Незнакомец сообщает Нулику, что он заколдован и обречён носить маску до тех пор, пока его не расколдуют.Но Нулик ещё слишком мал для такого серьёзного дела. Поэтому он вызывает в Карликанию своих друзей.Ребята попадают в незнакомую им страну Аль-Джебру.


Фрегат капитана Единицы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.