Путешествие по Карликании и Аль-Джебре - [2]
Несмотря на то что в Арабелле была ночь, из склада доносился невероятный шум. Там кричали, спорили, передвигали какие-то громоздкие вещи.
Мы подошли поближе и вот что услышали.
— Девочка, зачем ты кладёшь сюда апельсины?! — негодовал густой бас. — Разве ты не видишь, что здесь лежат электрические лампочки? Лампочки надо складывать с лампочками, а апельсины — с апельсинами. Иначе в сумме получатся какие-то лампольсины! Чему вас только учат в школе? Сразу видно, что ты маленькая Двойка, Да, да. Двойка, и ничего больше! Завтра ты станешь складывать лягушек с цаплями, и от твоих лягушек ничего не останется — цапли их попросту слопают!
— А зачем же вы сами сложили белую булку с ветчиной? — возразил тоненький голосок.
— Ах ты невежа! — возмутился бас. — Я их не складывал — я сделал из них бутерброд. Это же совсем другое дело! Бутерброд с ветчиной — это очень вкусно! Да как ты смеешь меня учить?! Сперва доживи до моего возраста, тогда и учи других. А я уж как-нибудь сам разберусь, с чем мне есть ветчину.
— Хи-хи-хи! — засмеялась девочка. — Вы просто обжора!
— А ты недоучка! — рассвирепел бас. — Убирайся, не то я завтра всё расскажу твоей учительнице.
Не дожидаясь встречи со спорщиками, мы поспешили выбраться из тупика.
— Слушайте, — сказал Сева, — теперь я, кажется, понял, что такое Карликания. Это же Арифметическое государство!
— Ай да Сева! — съязвила Таня. — И как ты только догадался? Не ты ли сам вчера складывал мандарины с выключателями?
Сева искоса виновато посмотрел на меня. Но я притворился, что ничего не слышал.
Мы вернулись на Числовую площадь. Светало. Постепенно раскрывались ставни, на улице появились первые прохожие.
В Арабелле начался день.
Никто из жителей города нас ещё не видел. Мы укрылись в небольшом садике. И я стал рассказывать моим спутникам о том, как возникло это государство.
Самое древнее государство
Мы знаем много древних государств: Индию, Египет, Вавилон, Ассирию, Грецию… Мы даже знаем, когда примерно каждое из них появилось. А вот когда появилось Арифметическое государство, этого никто не знает. А что оно очень-очень древнее, можно заключить из того, что и в Вавилоне, и в Египте, и в Греции, и на Руси, и во всех других древних государствах упоминается и Арифметическое. Значит, оно древнее всех.
Может быть, его основал самый-самый древний человек на земле, такой древний, что древнее его уже никого не было? Может быть, он издал Указ об основании Арифметического государства? Или захватил силой какую-нибудь страну и назвал её по-своему?
Нет, этого не может быть. Указов самый-самый древний человек писать, конечно, не умел — он вообще писать не умел, а государств в то время никаких и не было.
Были у древнего человека жена и двое детей. Вот пошёл однажды самый-самый древний человек на охоту и убил самого-самого древнего дикого кабана. Пришёл домой и… что же он сделал с добычей? Ну конечно же, разделил её на четыре части: жене, сыну, дочке и себе.
Так появилось на свете арифметическое действие — деление. Вот как древний человек заложил первый камень Арифметического государства!
А потом пошло! Дети, как все дети, хотели есть. Надо было запасать еду впрок. Древний человек стал чаще ходить на охоту, а добычу складывал в яму.
Вы понимаете, что он делал? Он складывал!
А осенью надо было собрать много орехов, ягод — ведь дети любят лакомства. Хозяйство древнего человека всё росло и умножалось.
А когда дети выросли, они переженились с детьми другого древнего человека. Для них надо было устраивать самостоятельные хозяйства. Тут родители без сожаления стали отнимать от своего добра самые лучшие шкуры зверей, самые крупные орехи, плоды и отдавать их детям. Было у родителей, скажем, по тридцати орехов, а после свадьбы оставалось только по восемнадцати. Значит, по двенадцати орехов они отдали.
Скажите, пожалуйста, разве это не самое обычное действие — вычитание?
Но древний человек ещё не знал, как называются арифметические действия. Он вообще не знал арифметики.
Конечно, это было очень давно. Можно только догадываться, как всё происходило. Людей на земле появлялось всё больше, хозяйства их росли. Всё труднее становилось делить, складывать, умножать, вычитать.
А некоторые нехорошие древние люди этим пользовались.
«Эй, друг! — говорил один такой нехороший древний человек. — Ты меня обманываешь. Ты обещал мне отдать десять кабаньих ножек. Вчера отдал четыре, сегодня — пять и говоришь, что мы в расчёте. Где же ещё одна ножка?»
«Нет, друг, — отвечал ему хороший древний человек, — я тебе вчера отдал не четыре, а пять кабаньих ножек. Ты позабыл».
«Нет, это ты позабыл! — возражал нехороший человек. — Ты больше мне не друг, и я тебя убью этой дубиной!»
Конечно, ничего бы этого не случилось, если бы хороший человек записал, сколько он отдал кабаньих ножек нехорошему человеку. А он этого не сделал. Не сделал потому, что не умел записывать числа.
И вот решили хорошие древние люди поступать так: каждую полученную или отданную кабанью ножку обозначать камешком, а камешки прятать в надёжное место. Теперь уж никто не скажет, что ножек он получил четыре, а не пять.
В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра».
Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку.
Заблудиться в лабиринте чисел очень просто. Но если вашим проводником согласится стать сама многоуважаемая Арифметика, путешествие удастся на славу. Каждая остановка, а их будет тридцать две (по числу букв алфавита) подарит вам незабываемые впечатления, а задачи, которые Арифметика иногда будет подкидывать своим спутникам, внесут ещё большее разнообразие в этот и без того прихотливый маршрут. Замечательная книга о приключениях мальчика Чита в Лабиринте Чисел и о его проводнице — Арифметике. В увлекательной форме знакомит детей со многими математическими и логическими понятиями.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
«Чёрная Маска из Аль-Джебры» — продолжение сказки «Три дня в Карликании», вышедшей в 1964 году в издательстве «Детская литература».Действие сказки происходит в соседнем с Карликанией государстве Аль-Джебре.Житель Арифметического государства Нулик случайно очутился у входа в таинственную пещеру. Здесь он увидел странное существо в чёрной маске. Незнакомец сообщает Нулику, что он заколдован и обречён носить маску до тех пор, пока его не расколдуют.Но Нулик ещё слишком мал для такого серьёзного дела. Поэтому он вызывает в Карликанию своих друзей.Ребята попадают в незнакомую им страну Аль-Джебру.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.