Принцесса или тигр? - [50]

Шрифт
Интервал

Ну что ж, я тут не исключение. Поэтому я хочу сначала указать на некоторые свойства машин Мак-Каллоха, которых, как мне кажется, не заметили ни сам Мак-Каллох, ни Крейг, ни Фергюссон, после чего я попытаюсь сделать некоторые обобщения.

Первое, что больше всего поразило меня при нашем обсуждении работы второй машины Мак-Каллоха, было то, что после введения правила 4 (правило повторения) мы уже больше не нуждаемся в правиле 2 (правило ассоциата) для того, чтобы получить принцип Крейга и законы Фергюссона! В самом деле, рассмотрим машину, в которой используются только правила 1 и 4. Для такой машины мы всегда можем найти некое число X, которое порождает само себя; можем также найти такое число, которое порождает повторение самого себя; задавая произвольное число А, мы можем найти такое число X, которое порождает АХ; наконец, мы можем найти число X, которое порождает повторение числа АХ или же повторение повторения АХ. Кроме того, используя машину Мак-Каллоха, из которой выведено правило 2, мы можем найти такое число X, которое порождает обращение самого себя, или число X, которое порождает повторение своего собственного обращения, или же число X, которое порождает обращение числа АХ, или, наконец, число X, которое порождает повторение обращения числа АХ. Далее, рассмотрим машину, в которой используются предложенные Мак-Каллохом правила 1, 2 и 4 (за исключением правила 3, то есть правила обращения). При такой машине у нас имеются два различных способа построения числа, которое порождает ассоциат самого себя, два способа построения числа, которое порождает свое собственное повторение; наконец, два способа построения числа, порождающего ассоциат своего повторения или повторение ассоциата самого себя.

Наконец, если у нас имеется произвольная машина, в которую заложены лишь правила 1 и 4, то принцип Крейга и законы Фергюссона продолжают выполняться и в этом случае. Таким образом, если бы мы вместо правила 2 воспользовались правилом 4, то для большинства задач, о которых шла речь в двух предыдущих главах, мы вполне могли бы получить альтернативные решения. (Понятно ли читателю, как все это можно сделать? Если нет, то можно обратиться к приведенным далее пояснениям.)

Я мог бы рассказать еще о многом, но лучше, пожалуй, будет сформулировать мои основные замечания в виде трех теорем.

Теорема 1. Закон Мак-Каллоха (который, как известно, гласит, что при любом А существует некое число X, которое порождает число АХ) оказывается справедливым не только для машин, подчиняющихся правилам 1 и 2, но и для машин, подчиняющихся правилам 1 и 4.

Теорема 2. Любая машина, которая подчиняется закону Мак-Каллоха, подчиняется также и двум принципам Крейга.

Теорема 3. Любая машина, которая подчиняется одновременно второму принципу Крейга и правилу 1, должна подчиняться также и всем законам Фергюссона.

Не сообразит ли читатель, как доказать все эти теоремы?

Решения

Рассмотрим сначала произвольную машину, которая подчиняется правилам 1 и 4. Как известно, при любом X число 52X порождает число XX; поэтому если выбрать в качестве X число 52, то мы получим, что число 5252 порождает число 5252. Итак, у нас есть число, которое порождает само себя. Кроме того, число 552552 порождает повторение самого себя. Далее, чтобы для любого А найти число X, которое порождает АХ, возьмем в качестве X число 52А52 (в самом деле, оно порождает повторение числа А52, которое есть число A52A52, то есть число АХ). Тем самым мы доказали теорему 1. (Если мы хотим найти число X, которое порождает повторение АХ, то в качестве X следует взять число 552А552.)

А теперь рассмотрим машину, которая подчиняется выведенным Мак-Каллохом правилам 1, 3 и 4. Числом, порождающим обращение самого себя, является, например, число 452452 (оно порождает обращение повторения числа 452, или, другими словами, обращение числа 452452). (Сравните его с предыдущим решением 43243.) Числом, которое порождает повторение обращения самого себя, является число 54525452. (Сравните его с прежним решением 5432543.)

Далее, рассмотрим машину, которая подчиняется правилам 1, 2 и 4. Мы знаем, что число 33233 порождает свой собственный ассоциат точно так же, как и число 352352. Что касается числа X, порождающего повторение самого себя, то у нас уже имеются два решения — это числа 35235 и 552552. Что же касается числа X, порождающего ассоциат повторения самого себя, то одним решением служит число 3532353; другим — число 35523552. Наконец, для числа, которое порождает повторение своего собственного ассоциата, также существуют два решения — это число 5332533 или число 53525352.

Наконец, рассмотрим некоторую произвольную машину, которая подчиняется по меньшей мере двум из правил Мак-Каллоха, а именно: правилам 1 и 4. Для заданного операционного числа M числом А, порождающим М(X), оказывается число М52М52. (Сравните его с прежним решением — числом М32МЗ, полученным для машины, в которой вместо правила 4 используется правило 2.) Если теперь задано операционное число M и некое число А, то числом X, порождающим M(AX), будет число


Еще от автора Рэймонд М Смаллиан
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Алиса в Стране Смекалки

Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.


Приключения Алисы в Стране Головоломок

Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.