Принцесса или тигр? - [48]

Шрифт
Интервал

и N и произвольные числа А и В, всегда можно найти числа X и Y, которые отвечают любому из ниже перечисленных условий:

а) X порождает М(АY) а Y порождает N(X);

б) X порождает М(АY) а Y порождает BX;

в) X порождает M(Y), а Y порождает X;

г) X порождает M(AY), а Y порождает X.

Попробуйте доказать эти утверждения.


10. Триплеты и так далее.

— Ну, теперь-то, мне кажется, мы перебрали уже все возможные варианты, — сказал Крейг.

— Да нет, — ответил Фергюссон. — То, что я вам показывал до сих пор, — это еще только начало. А знаете ли вы, например, что существуют три числа X, Y и Z, такие, что число X порождает обращение Y, число Y порождает повторение Z, а число Z порождает ассоциат X?

— Неужели? — удивился Мак-Каллох.

— Именно так, — подтвердил Фергюссон. — Более того, если заданы три произвольных операционных числа M, N и P, то должны существовать такие числа X, Y и Z, при которых X порождает M(Y), Y порождает N(Z), a Z порождает P(X).

Не сумеете ли вы, читатель, доказать это утверждение? И в частности, каковы будут эти числа X, Y и Z, если известно, что число X порождает обращение Y, число Y порождает повторение Z, а число Z порождает ассоциат X?

После того как Крейг и Мак-Каллох решили и эту задачу, Фергюссон сказал:

— Конечно, тут тоже возможны самые разные варианты этого «тройного» закона. Например, если заданы три любых операционных числа M, N и P, а также три произвольных числа А, В и С, то существуют такие числа X, Y и Z, при которых число X порождает M(AY), число Y порождает N(BZ), а число Z порождает P(СХ). Это справедливо и в том случае, если взять не три числа А, В, С, а любые два из них или даже одно.[5] Так, мы можем найти такие числа X, Y и Z, при которых X порождает АY, Y порождает M(Z), a Z порождает N(BX). Возможны, естественно, и всякие другие варианты — вы вполне можете заняться ими на досуге.

— Кроме того, — продолжал он, — та же идея действует и тогда, когда мы используем 4 операционных числа или даже более. Например, мы можем найти числа X, Y, Z и W, при которых число X порождает 78Y, число Y порождает повторение Z, число Z порождает обращение W, а число W порождает ассоциат 62X. Возможности практически бесконечны, причем их удивительное многообразие обусловлено всего лишь правилами 1 и 2.

Решения

1. Одно из решений состоит в том, чтобы принять X = 4325243 и Y = 524325243. Поскольку число 25243 порождает число 5243, то число 325243 порождает ассоциат 5243, или число 524325243, которое и есть Y.

Далее, так как число 325243 порождает Y, то число 4325243 порождает обращение Y, но 4325243 — это как раз и есть X. Таким образом, X порождает обращение Y. Кроме того. Y, очевидно, порождает повторение X (потому что Y — это есть число 52X, а поскольку число 2X порождает X, то число 52X будет порождать повторение X). Итак, X порождает обращение Y, а Y порождает повторение X.


2. Крейг воспользовался законом Мак-Каллоха, а именно: для любого числа А существует некоторое число X (а именно число 32A3), которое порождает число АХ. Так, в частности, если мы примем А за число 2, то получим некоторое число X (а именно число 3223), которое порождает 2X. Число же 2X в свою очередь будет порождать X. Таким образом, в качестве решения этой задачи подходит пара чисел 3223 и 23223: 3223 порождает 23223, а 23223 порождает 3223.


3. Крейг решил эту задачу следующим способом. Он рассудил, что ему надо всего лишь найти такое число X, которое порождает 27X. Тогда, положив Y = 27X, мы получим, что число X порождает Y, а число Y порождает 7X. Такое число X он тоже нашел — это число 32273. Поэтому решение Крейга имеет вид: X = 32273, Y = 2732273.

То же самое происходит, конечно, и в том случае, если вместо конкретного числа 7 мы возьмем любое число А. В самом деле, если X = 322АЗ, а Y = 2A322АЗ, то число X будет порождать Y, а число Y будет порождать АХ.


4. Что же касается Мак-Каллоха, то он подошел к решению данной задачи несколько иначе. Он начал с того, что стал искать такое число Y, которое порождает 72Y. Теперь, если обозначить через X число 2Y, то мы получаем, что число X порождает Y, а число Y порождает 7X. При этом нам уже известно, как найти такое число Y — надо взять Y = 32723. Итак, решение Мак-Каллоха имеет вид: X = 232723, Y = 32723.


5. Единственное, что нам нужно — это найти такое число X, которое порождало бы число А2ВХ. Тогда, если мы положим Y = 2ВХ, то будем иметь, что число X порождает АY, а число Y порождает BX. Таким числом X, которое порождает А2ВХ, является число 32А2ВЗ. Стало быть, решение задачи выглядит так: X = 32A2ВЗ, Y = 2B32A2ВЗ. (В частном случае А = 7, В = 8 и решением будет X = 327283, Y = 28327283.)


6. Сначала попробуем решить эту задачу с помощью второго принципа Крейга, который, как мы помним, гласит, что для любого операционного числа M и для произвольного числа А существует некоторое число X (а именно число М32АМЗ), которое порождает М(АХ). Возьмем теперь два любых операционных числа M и N. Тогда, согласно этому принципу (если взять в качестве А число N2), найдется некое число X (а именно число M32N2M3), которое порождает число


Еще от автора Рэймонд М Смаллиан
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Алиса в Стране Смекалки

Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.


Приключения Алисы в Стране Головоломок

Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.