Принцесса или тигр? - [51]

Шрифт
Интервал

52АМ52. (Сравните его с прежним решением — М32АМЗ.) Построенные решения показывают нам, что оба принципа Крейга могут быть получены на основании правил 1 и 4. Впрочем, я сформулировал гораздо более общее утверждение, а именно: для того чтобы получить принципы Крейга, достаточно одного только закона Мак-Каллоха (теорема 2). Это утверждение можно доказать тем же способом, который использовался нами в гл. 10. В самом деле, для любого заданного операционного числа M существует некое число Y, которое порождает MY; отсюда ясно, что число MY порождает М(МY). Поэтому число X порождает М(X), где X = MY. Точно так же для любого числа А, если имеется некоторое число Y, порождающее AMY, число MY порождает М(АMY) и, следовательно, число X порождает М(АХ) при X = MY.

Что же касается теоремы 3, то ее можно доказать так же, как это делалось в предыдущей главе. [Например, если даны операционные числа M и N и если выполняется второй принцип Крейга, то существует некое число X, которое порождает M(N2X). Если теперь мы обозначим число N2X через Y, то получим, что число X порождает М(Y), а число Y порождает N(X).]

13. Ключ

Дело, по которому Крейг поехал в Норвегию, заняло у него гораздо меньше времени, чем он предполагал, и ровно через три недели инспектор возвратился домой. Дома его ждала записка от Мак-Каллоха:

Дорогой Крейг!

Если ты случайно вернешься из Норвегии до 12 мая (это пятница), то приходи ко мне в этот день обедать. Фергюссона я уже пригласил.

С приветом

Норман Мак-Каллох

— Вот и отлично! — сказал себе Крейг. — Я вернулся как раз вовремя!

Крейг приехал к Мак-Каллоху минут через пятнадцать после того, как там появился Фергюссон.

— С благополучным возвращением! — приветствовал приятеля Мак-Каллох.

— Пока вас не было, — сразу же сообщил Фергюссон, — Мак-Каллох изобрел новую числовую машину!

— Ну да? — удивился Крейг.

— Я занимался этим не один, — сказал Мак-Каллох, — Фергюссон тоже приложил к ней руку. А вообще-то машина интересная; на этот раз в нее введены следующие четыре правила:

правило MI: для любого числа X число 2X2 порождает X;

правил о МII: если число X порождает число Y, то число 6X порождает число 2Y;

правило MIII: если число X порождает число Y, то число 4X порождает число Y⃖ (как и в случае предыдущей машины);

правило MIV: если число X порождает число Y, то число 5X порождает число YY (как и в случае предыдущей машины).

— Эта машина, — продолжал Мак-Каллох, — обладает всеми прекрасными свойствами моей последней машины — она подчиняется двум твоим принципам и, кроме того, закону двойных аналогов Фергюссона.

Крейг довольно долго и внимательно изучал эти правила. Наконец он сказал:

— Что-то мне никак не удается сдвинуться с места. Не могу даже найти число, которое порождает само себя. Есть тут такие числа?

— Есть, — ответил Мак-Каллох, — но с помощью этой машины найти их гораздо труднее, чем в предыдущем случае. Честно говоря, я тоже не смог решить эту задачу. А вот Фергюссон с ней справился. Более того, теперь мы знаем, что такое короткое число, порождающее само себя, состоит из десяти цифр.

Крейг опять глубоко задумался.

— А что, первых двух правил недостаточно для нахождения такого числа? — поинтересовался он наконец.

— Нет, конечно! — ответил Мак-Каллох. — Для получения этого числа нам необходимы все четыре правила.

— Удивительное дело, — пробормотал Крейг и вновь погрузился в глубокое раздумье.

— О господи! — вдруг воскликнул он, буквально подскочив на стуле. — Да ведь это же решение загадки сейфа!

— О чем это вы? — спросил Фергюссон.

— А-а, прошу прощения! Вы ведь не знаете, — сказал Крейг и поведал им всю историю с банковским сейфом из Монте-Карло.

— Надеюсь, вы понимаете, что наш разговор сугубо конфиденциальный, — заключил свой рассказ Крейг. — А теперь, Мак-Каллох, если ты дашь мне число, которое порождает само себя, то я сразу же смогу назвать комбинацию, которая откроет замок сейфа.

Итак, читателю предлагаются три задачи.

1) Какое число X порождает само себя в последней машине?

2) Какая комбинация открывает замок сейфа?

3) Как связаны между собой первые два вопроса?

Эпилог

Рано утром следующего дня Крейг, подыскав надежного человека, отправил в Монте-Карло пакет, адресованный Мартинесу, в котором была записана найденная им накануне кодовая комбинация. Курьер прибыл вовремя, и сейф был благополучно открыт.

Как и обещал Мартинес, совет директоров банка прислал Крейгу солидное денежное вознаграждение. Крейг настоял на том, чтобы разделить эти деньги с Мак-Каллохом и Фергюссоном. Свой успех трое друзей решили отпраздновать, заказав шикарный ужин в ресторане «У льва».

— А знаете, — сказал Крейг, отведав превосходного хереса. — Пожалуй, это было одно из самых интересных дел в моей практике. Подумать только, числовые машины, созданные из чисто интеллектуального любопытства, и вдруг оказывают такую неоценимую помощь на практике!

Решения

Сначала еще несколько слов о загадке сейфа из Монте-Карло. В последнем условии Фаркуса не говорится, что требуемая комбинация у непременно должна отличаться от комбинации x. Поэтому если предположить, что х и


Еще от автора Рэймонд М Смаллиан
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Алиса в Стране Смекалки

Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.


Приключения Алисы в Стране Головоломок

Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.