Принцесса или тигр? - [52]

Шрифт
Интервал

представляют собой одну и ту же комбинацию, то указанное условие можно будет прочитать так: «Пусть комбинация х родственна по отношению к комбинации х, тогда если комбинация х блокирует замок, то комбинация х будет нейтральной; если же комбинация х оказывается нейтральной, то комбинация х блокирует замок». Однако невозможно, чтобы комбинация х одновременно была нейтральной и блокировала замок. Следовательно, если комбинация х родственна но отношению к х, тогда эта комбинация не может ни оказаться нейтральной, ни блокировать замок. А значит, она должна этот замок открывать! Таким образом, если мы сумеем найти комбинацию х, которая родственна самой себе, то такая комбинация х обязательно откроет нам замок.

Конечно, Крейг понял это еще задолго до того, как вернулся в Лондон. Но как найти комбинацию х, которая родственна самой себе? Именно на этот вопрос Крейг и не мог ответить до тех пор, пока судьба не столкнула его с третьей машиной Мак-Каллоха.

Оказывается, задача нахождения комбинации, которая, согласно условию Фаркуса, является родственной самой себе, по своей сути тождественна задаче нахождения числа, которое порождает само себя в последней машине Мак-Каллоха. Единственное существенное отличие заключается в том, что кодовые комбинации для замка — это цепочки букв, тогда как числовые машины работают с цепочками цифр. Однако первую задачу можно легко преобразовать ко второй, и наоборот, следующим простым приемом.

Во-первых, мы рассматриваем лишь комбинации из букв Q, L, V, R (совершенно очевидно, что только эти буквы играют в задаче существенную роль). Предположим теперь, что вместо этих букв мы будем использовать собственно цифры 2, 6, 4, 5 (то есть 2 вместо Q, 6 вместо L, 4 вместо V и 5 вместо R). Для удобства запишем это так:

Q L V R

2 6 4 5

Теперь посмотрим, какой вид примут первые четыре условия Фаркуса, если мы запишем их не в буквах, а в цифрах.

(1). Для любого числа X число 2X2 является родственным числу X.

(2). Если число X родственно числу Y, то число 6X оказывается родственным числу 2Y.

(3). Если число X родственно числу Y, то число 4X родственно числу Y⃖.

(4). Если число X родственно числу Y, то число 5X родственно числу YY.

Сразу видно, что это — точно те же правила, которым подчиняется последняя машина Мак-Каллоха, с той лишь разницей, что вместо слова «порождает» используется слово «родственно». (Конечно, я мог бы воспользоваться словом «порождает» и в гл. 8, где речь шла об условиях Фаркуса, но тогда читателю было бы слишком уж легко обо всем догадаться!)

Позвольте мне сказать это еще раз и поточнее. Для любой комбинации х, состоящей из букв Q, L, V, R, мы будем обозначать через х число, которое получается при замене Q на цифру 2, L на цифру 6, V на цифру 4 и R на цифру 5. Например, если это комбинация вида VQRLQ, то х — число 42562. При этом мы будем называть число х кодовым номером комбинации х. (Кстати, идея приписывания логическим высказываниям специальных чисел — так называемых «гёделевых номеров» — принадлежит известному логику Курту Гёделю и известна под названием гёделевой нумерации. Она очень важна, как мы увидим в IV части нашей книги.)

Значит, мы можем окончательно сформулировать главную мысль последнего абзаца в таком виде: для любых комбинаций х и у, составленных из четырех букв Q, L, V, R, если, исходя из правил MI, MII, MIII и MIV, используемых в последней машине Мак-Каллоха, можно показать, что число х порождает число у, то тогда, исходя из первых четырех условий Фаркуса, можно показать и то, что комбинация х является родственной по отношению к комбинации у, и наоборот.

Таким образом, если мы находим число, которое должно порождать само себя в последней числовой машине Мак-Каллоха, то это число должно оказаться кодовым номером некой комбинации, родственной самой себе, причем эта комбинация будет открывать замок.

Но как же нам найти такое число N, которое, порождало бы само себя в нашей последней машине? Прежде всего будем искать некоторое число Н, такое, чтобы для любых чисел X и Y, если число X порождает число Y, число НХ порождало бы число Y2Y2. Если мы сумеем найти это число Н, тогда при любом Y число Н2Y2 будет порождать число Y2Y2 (потому что, согласно правилу MI, число 2Y2 порождает число Y), а значит, число Н2Н2 будет порождать число Н2Н2; тем самым мы получим искомое число N. Но как найти число Н?

Эта задача сводится к следующей: как, исходя из заданного числа Y и последовательно применяя операции, которые способна выполнять наша машина, получить число Y2Y2? Так вот, построить число Y2Y2 из числа Y можно следующим способом: сначала построить обращение числа Y, получив число Y⃖; затем слева от Y⃖ приписать цифру 2, получив тем самым число 2Y⃖; далее построить обращение числа 2Y⃖, получив число Y2; наконец, построить повторение числа Y2, получив число Y2Y2. Эти операции обозначаются соответственно операционными числами 4, 6, 4 и 5, поэтому в качестве Н мы выберем число 5464.

Давайте проверим, подходит ли нам найденное число Н. Пусть число X порождает число Y; тогда мы должны выяснить, действительно ли число 5464


Еще от автора Рэймонд М Смаллиан
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Алиса в Стране Смекалки

Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.


Приключения Алисы в Стране Головоломок

Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.