Ответы на экзаменационные билеты по эконометрике - [10]

Шрифт
Интервал

Для определения оптимальных значений коэффициентов β0…βn необходимо минимизировать функционал F по данным параметрам:

Суть минимизации функционала F состоит в определении таких значений коэффициентов β0…βn, при которых сумма квадратов отклонений наблюдаемых значений результативной переменной у от теоретических значений ỹ с учётом заданных весов g была бы минимальной.

12. Оценивание неизвестных коэффициентов модели регрессии методом наименьших квадратов. Теорема Гаусса – Маркова

Определение коэффициентов модели регрессии осуществляется на третьем этапе схемы построения эконометрической модели. В результате этой процедуры рассчитываются оценки (приближенные значения) неизвестных коэффициентов спецификации модели.

Спецификация линейной эконометрической модели из изолированного уравнения с гомоскедастичными возмущениями имеет вид:

Рассмотрим метод наименьших квадратов на примере оценивания эконометрических моделей в виде моделей парной регрессии (изолированных уравнений с двумя переменными).

Если уравнение модели содержит две экономические переменные – эндогенную yiи предопределенную xi, то модель имеет вид:

Данная модель называется моделью линейной парной регрессии и содержит три неизвестных параметра:

β0 , β1 , σ. (3)

Предположим, что имеется выборка: (х1, y1), (х2, y2),… (хn , yn) (4)

Тогда в рамках исследуемой  модели данные величины связаны следующим образом:

y1 = a0 + a1 * x1 + u1,

y2 = a0 + a1 * x2 + u2, (5)

yn= a0 + a1 * x n + u n.

Данная система называется системой уравнений наблюдения объекта в рамках исследуемой линейной модели или схемой Гаусса-Маркова.

Компактная запись схемы Гаусса-Маркова:

где

– вектор-столбец известных значений эндогенной переменной yiмодели регрессии;

– вектор-столбец неизвестных значений случайных возмущений εi;

– матрица известных значений предопределенной переменной xi модели;

β = (β0  β1 )Т (10) – вектор неизвестных коэффициентов модели регрессии.

Обозначим оценку вектора неизвестных коэффициентов модели регрессии как

Данная оценка вычисляется на основании выборочных данных (7) и (9) с помощью некоторой процедуры:


где P (X, ỹ) – символ процедуры.

Процедура (12) называется линейной относительно вектора (7) значений эндогенной переменной yi, если выполняется условие:

где

(14) – матрица коэффициентов, зависящих только от выборочных значений (9) предопределенной переменной хi.

Теорема Гаусса-Маркова. Пусть матрица Х коэффициентов уравнений наблюдений (6) имеет полный ранг, а случайные возмущения (8) удовлетворяют четырем условиям:

E(ε1) = E(ε2) = … = E(εn) = 0, (15)

Var(ε1) = Var(ε2) = … = Var(εn) =  σ2(16)

Cov(εi, εj) = 0 при i≠j(17)

Cov(xi,εj) = 0 при всех значениях i и j (18)

В этом случае справедливы следующие утверждения:

а) наилучшая линейная процедура (13), приводящая к несмещенной и эффективной оценке (11), имеет вид:

б) линейная несмещенная эффективная оценка (19) обладает свойством наименьших квадратов:

в) ковариационная матрица оценки (19) вычисляется по правилу:

г) несмещенная оценка параметра σ2 модели (2) находится по формуле:

Следствие теоремы Гаусса-Маркова. Оценка

доставляемая процедурой (19) метода наименьших квадратов, может быть вычислена в процессе решения системы двух линейных алгебраических уравнений:

Данная система называется системой нормальных уравнений. Ее коэффициенты и свободные члены определяются по правилам:

[x] = x1 + x2 +…+ xn,

[y] = y1 + y2 +…+ yn, (24)

x2] = x12 + x22 +…+ xn2,

[xy] = x1*y1 + x2*y2 + … + xn*yn.

Явный вид решения системы (23):


13. Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии

Предположим, что в ходе регрессионного анализа была установлена линейная взаимосвязь между исследуемыми переменными х и у, которая описывается моделью регрессии вида:


В результате оценивания данной эконометрической модели определяются оценки неизвестных коэффициентов. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

Метод наименьших квадратов позволяет получить такие оценки параметров β0 и β1, при которых сумма квадратов отклонений фактических значений результативного признака y от расчетных (теоретических) ỹ минимальна:

В процессе минимизации функции (1) неизвестными являются только значения коэффициентов β0 и β1, потому что значения результативной и факторной переменных известны из наблюдений. Для определения минимума функции двух переменных вычисляются частные производные этой функции по каждому из оцениваемых параметров и приравниваются к нулю. Результатом данной процедуры будет стационарная система уравнений для функции (2):

.

Если разделить обе части каждого уравнения системы на (-2), раскрыть скобки и привести подобные члены, то получим систему нормальных уравнений для функции регрессии вида yi=β0+β1xi:


Если решить данную систему нормальных уравнений, то мы получим искомые оценки неизвестных коэффициентов модели регрессии β0 и β1:


где

– среднее значение зависимой переменной;


– среднее значение независимой переменной;


– среднее арифметическое значение произведения зависимой и независимой переменных;


Еще от автора Ангелина Витальевна Яковлева
Экономическая статистика. Шпаргалка

Шпаргалка подготовлена в соответствии с программой учебного курса «Экономическая статистика». В пособии кратко изложены ответы на вопросы по данной дисциплине, достаточные для ответа на экзамене или зачете. Пособие поможет в короткие сроки повторить ранее изученный материал, а также эффективно подготовиться к сдаче экзамена или зачета по данному предмету.Издание предназначено студентам экономических специальностей.


Рекомендуем почитать
Перманентный кризис

Книга директора Центра по исследованию банковского дела и финансов, профессора финансов Цюрихского университета Марка Шенэ посвящена проблемам гипертрофии финансового сектора в современных развитых странах. Анализируя положение в различных национальных экономиках, автор приходит к выводу о том, что финансовая сфера всё более действует по законам «казино-финансов» и развивается независимо и часто в ущерб экономике и обществу в целом. Автор завершает свой анализ, предлагая целую систему мер для исправления этого положения.


Общая теория занятости, процента и денег

Джон Мейнард Кейнс является настолько крупной фигурой в истории экономической мысли, что его основная работа представляет бесспорный интерес, как для научных кругов, так и учащихся. Оригинальное содержание работы и важность вытекающих из нее практических заключений обусловили ее лидирующее положение среди трудов по экономике. Теория Кейнса далеко перешла за границы, определенные проблемой безработицы в Англии. Она дает интерпретацию рыночных отношений в целом и содержит полное обновление экономической теории и методов ее анализа.


Экономический образ мышления

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Кому тяжелы налоги в СССР

В капиталистических государствах налоги и сборы с населения являются наиглавнейшими источниками доходов. Чем больше потребности буржуазного государства, тем выше обложение населения.Чтобы составить себе представление о тех суммах, которые ежегодно берутся с населения, достаточно указать на что именно они тратятся. Мы все знаем, что в буржуазных странах только говорят о разоружении. На самом деле буржуазия не только не разоружается, но с каждым годом увеличивает свои сухопутные армии и морской флот, повышает количество и качество вооружения.В Советском Союзе также взимаются налоги с населения, но у нас налоги имеют другие цели, и обложение производится по иному.


Нефть и внешняя политика

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


ЕвроСоюз: Новое Средневековье уже рядом

Убийца иллюзий (http://alexsword.livejournal.com/44189.html)10 февраля 2010 г.Многие задают вопросы – а что там случилось с Испанией, что там с Грецией, что там с Португалией и т.д.Ребята, поймите простую вещь! Это все частные симптомы одной большой болезни – гигантского разрыва между виртуальной стоимостью "финансовых активов" и физическими процессами создания новых ценностей. Это все равно, как если игроки в монополию договорятся, что их фантики будут обмениваться в реальном мире на реальные товары.