Ответы на экзаменационные билеты по эконометрике - [11]

Шрифт
Интервал

– дисперсия независимой переменной;

Gcov (x, y) – ковариация между зависимой и независимой переменными.

Таким образом, явный вид решения системы нормальных уравнений может быть записан следующим образом:

14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии

Помимо метода наименьших квадратов, с помощью которого в большинстве случаев определяются неизвестные параметры модели регрессии, в случае линейной модели парной регрессии осуществим иной подход к решению данной проблемы.

Линейная модель парной регрессии может быть записана в виде:

где у – значения зависимой переменной;

х – значения независимой переменной;

– среднее значение зависимой переменной, которое определяется на основании выборочных данных вычисленное по формуле средней арифметической:

уi– значения зависимой переменной,

n – объём выборки;

– среднее значение независимой переменной, которое определяется на основании выборочных данных вычисленное по формуле средней арифметической:

Параметр βyx называется выборочным коэффициентом регрессии переменной у по переменной х. Данный параметр показывает, на сколько в среднем изменится зависимая переменная у при изменении независимой переменной х на единицу своего измерения.

Выборочный коэффициент регрессии переменной у по переменной х рассчитывается по формуле:

где ryx – это выборочный парный коэффициент корреляции между переменными у и х, который рассчитывается по формуле:

– среднее арифметическое значение произведения зависимой и независимой переменных:

Sy – показатель выборочного среднеквадратического отклонения зависимой переменной у. Этот показатель характеризует, на сколько единиц в среднем отклоняются значения зависимой переменной у от её среднего значения. Он рассчитывается по формуле:

– среднее значение из квадратов значений зависимой переменной у:

– квадрат средних значений зависимой переменной у:

Sx – показатель выборочного среднеквадратического отклонения независимой переменной х. Этот показатель характеризует, на сколько единиц в среднем отклоняются значения независимой переменной х от её среднего значения. Они рассчитывается по формуле:

– среднее значение из квадратов значений независимой переменной х:

– квадрат средних значений независимой переменной х:

При использовании рассмотренного подхода оценивания неизвестных параметров линейной модели парной регрессии, следует учитывать что ryx=rxy, однако βyx≠βxy.

15. Оценка дисперсии случайной ошибки модели регрессии

При проведении регрессионного анализа основная трудность заключается в том, что генеральная дисперсия случайной ошибки является неизвестной величиной, что вызывает необходимость в расчёте её несмещённой выборочной оценки.

Несмещённой оценкой дисперсии (или исправленной дисперсией) случайной ошибки линейной модели парной регрессии называется величина, рассчитываемая по формуле:

где n – это объём выборочной совокупности;

еi– остатки регрессионной модели:

Для линейной модели множественной регрессии несмещённая оценка дисперсии случайной ошибки рассчитывается по формуле:

где k – число оцениваемых параметров модели регрессии.

Оценка матрицы ковариаций случайных ошибок Cov(ε) будет являться оценочная матрица ковариаций:

где In – единичная матрица.

Оценка дисперсии случайной ошибки модели регрессии распределена по ε2(хи-квадрат) закону распределения с (n-k-1) степенями свободы.

Для доказательства несмещённости оценки дисперсии случайной ошибки модели регрессии необходимо доказать справедливость равенства

Доказательство. Примем без доказательства справедливость следующих равенств:

где G2(ε) – генеральная дисперсия случайной ошибки;

S2(ε) – выборочная дисперсия случайной ошибки;

– выборочная оценка дисперсии случайной ошибки.

Тогда:

т. е.

что и требовалось доказать.

Следовательно, выборочная оценка дисперсии случайной ошибки

является несмещённой оценкой генеральной дисперсии случайной ошибки модели регрессии G2(ε).

При условии извлечения из генеральной совокупности нескольких выборок одинакового объёма n и при одинаковых значениях объясняющих переменных х, наблюдаемые значения зависимой переменной у будут случайным образом колебаться за счёт случайного характера случайной компоненты β. Отсюда можно сделать вывод, что будут варьироваться и зависеть от значений переменной у значения оценок коэффициентов регрессии и оценка дисперсии случайной ошибки модели регрессии.

Для иллюстрации данного утверждения докажем зависимость значения МНК-оценки

от величины случайной ошибки ε.

МНК-оценка коэффициента β1 модели регрессии определяется по формуле:

В связи с тем, что переменная у зависит от случайной компоненты ε (yi=β0+β1xi+εi), то ковариация между зависимой переменной у и независимой переменной х может быть представлена следующим образом:

Для дальнейших преобразования используются свойства ковариации:

1) ковариация между переменной х и константой С равна нулю: Cov(x,C)=0, C=const;

2) ковариация переменной х с самой собой равна дисперсии этой переменной: Cov(x,x)=G2(x).

Исходя из указанных свойств ковариации, справедливы следующие равенства:

Cov(x,β0)=0 (β0=const);

Cov(x, β1x)= β1*Cov(x,x)= β1*G2(x).


Еще от автора Ангелина Витальевна Яковлева
Экономическая статистика. Шпаргалка

Шпаргалка подготовлена в соответствии с программой учебного курса «Экономическая статистика». В пособии кратко изложены ответы на вопросы по данной дисциплине, достаточные для ответа на экзамене или зачете. Пособие поможет в короткие сроки повторить ранее изученный материал, а также эффективно подготовиться к сдаче экзамена или зачета по данному предмету.Издание предназначено студентам экономических специальностей.


Рекомендуем почитать
Перманентный кризис

Книга директора Центра по исследованию банковского дела и финансов, профессора финансов Цюрихского университета Марка Шенэ посвящена проблемам гипертрофии финансового сектора в современных развитых странах. Анализируя положение в различных национальных экономиках, автор приходит к выводу о том, что финансовая сфера всё более действует по законам «казино-финансов» и развивается независимо и часто в ущерб экономике и обществу в целом. Автор завершает свой анализ, предлагая целую систему мер для исправления этого положения.


Общая теория занятости, процента и денег

Джон Мейнард Кейнс является настолько крупной фигурой в истории экономической мысли, что его основная работа представляет бесспорный интерес, как для научных кругов, так и учащихся. Оригинальное содержание работы и важность вытекающих из нее практических заключений обусловили ее лидирующее положение среди трудов по экономике. Теория Кейнса далеко перешла за границы, определенные проблемой безработицы в Англии. Она дает интерпретацию рыночных отношений в целом и содержит полное обновление экономической теории и методов ее анализа.


Экономический образ мышления

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Кому тяжелы налоги в СССР

В капиталистических государствах налоги и сборы с населения являются наиглавнейшими источниками доходов. Чем больше потребности буржуазного государства, тем выше обложение населения.Чтобы составить себе представление о тех суммах, которые ежегодно берутся с населения, достаточно указать на что именно они тратятся. Мы все знаем, что в буржуазных странах только говорят о разоружении. На самом деле буржуазия не только не разоружается, но с каждым годом увеличивает свои сухопутные армии и морской флот, повышает количество и качество вооружения.В Советском Союзе также взимаются налоги с населения, но у нас налоги имеют другие цели, и обложение производится по иному.


Нефть и внешняя политика

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


ЕвроСоюз: Новое Средневековье уже рядом

Убийца иллюзий (http://alexsword.livejournal.com/44189.html)10 февраля 2010 г.Многие задают вопросы – а что там случилось с Испанией, что там с Грецией, что там с Португалией и т.д.Ребята, поймите простую вещь! Это все частные симптомы одной большой болезни – гигантского разрыва между виртуальной стоимостью "финансовых активов" и физическими процессами создания новых ценностей. Это все равно, как если игроки в монополию договорятся, что их фантики будут обмениваться в реальном мире на реальные товары.