Ответы на экзаменационные билеты по эконометрике - [11]
– дисперсия независимой переменной;
Gcov (x, y) – ковариация между зависимой и независимой переменными.
Таким образом, явный вид решения системы нормальных уравнений может быть записан следующим образом:
14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии
Помимо метода наименьших квадратов, с помощью которого в большинстве случаев определяются неизвестные параметры модели регрессии, в случае линейной модели парной регрессии осуществим иной подход к решению данной проблемы.
Линейная модель парной регрессии может быть записана в виде:
где у – значения зависимой переменной;
х – значения независимой переменной;
– среднее значение зависимой переменной, которое определяется на основании выборочных данных вычисленное по формуле средней арифметической:
уi– значения зависимой переменной,
n – объём выборки;
– среднее значение независимой переменной, которое определяется на основании выборочных данных вычисленное по формуле средней арифметической:
Параметр βyx называется выборочным коэффициентом регрессии переменной у по переменной х. Данный параметр показывает, на сколько в среднем изменится зависимая переменная у при изменении независимой переменной х на единицу своего измерения.
Выборочный коэффициент регрессии переменной у по переменной х рассчитывается по формуле:
где ryx – это выборочный парный коэффициент корреляции между переменными у и х, который рассчитывается по формуле:
– среднее арифметическое значение произведения зависимой и независимой переменных:
Sy – показатель выборочного среднеквадратического отклонения зависимой переменной у. Этот показатель характеризует, на сколько единиц в среднем отклоняются значения зависимой переменной у от её среднего значения. Он рассчитывается по формуле:
– среднее значение из квадратов значений зависимой переменной у:
– квадрат средних значений зависимой переменной у:
Sx – показатель выборочного среднеквадратического отклонения независимой переменной х. Этот показатель характеризует, на сколько единиц в среднем отклоняются значения независимой переменной х от её среднего значения. Они рассчитывается по формуле:
– среднее значение из квадратов значений независимой переменной х:
– квадрат средних значений независимой переменной х:
При использовании рассмотренного подхода оценивания неизвестных параметров линейной модели парной регрессии, следует учитывать что ryx=rxy, однако βyx≠βxy.
15. Оценка дисперсии случайной ошибки модели регрессии
При проведении регрессионного анализа основная трудность заключается в том, что генеральная дисперсия случайной ошибки является неизвестной величиной, что вызывает необходимость в расчёте её несмещённой выборочной оценки.
Несмещённой оценкой дисперсии (или исправленной дисперсией) случайной ошибки линейной модели парной регрессии называется величина, рассчитываемая по формуле:
где n – это объём выборочной совокупности;
еi– остатки регрессионной модели:
Для линейной модели множественной регрессии несмещённая оценка дисперсии случайной ошибки рассчитывается по формуле:
где k – число оцениваемых параметров модели регрессии.
Оценка матрицы ковариаций случайных ошибок Cov(ε) будет являться оценочная матрица ковариаций:
где In – единичная матрица.
Оценка дисперсии случайной ошибки модели регрессии распределена по ε2(хи-квадрат) закону распределения с (n-k-1) степенями свободы.
Для доказательства несмещённости оценки дисперсии случайной ошибки модели регрессии необходимо доказать справедливость равенства
Доказательство. Примем без доказательства справедливость следующих равенств:
где G2(ε) – генеральная дисперсия случайной ошибки;
S2(ε) – выборочная дисперсия случайной ошибки;
– выборочная оценка дисперсии случайной ошибки.
Тогда:
т. е.
что и требовалось доказать.
Следовательно, выборочная оценка дисперсии случайной ошибки
является несмещённой оценкой генеральной дисперсии случайной ошибки модели регрессии G2(ε).
При условии извлечения из генеральной совокупности нескольких выборок одинакового объёма n и при одинаковых значениях объясняющих переменных х, наблюдаемые значения зависимой переменной у будут случайным образом колебаться за счёт случайного характера случайной компоненты β. Отсюда можно сделать вывод, что будут варьироваться и зависеть от значений переменной у значения оценок коэффициентов регрессии и оценка дисперсии случайной ошибки модели регрессии.
Для иллюстрации данного утверждения докажем зависимость значения МНК-оценки
от величины случайной ошибки ε.
МНК-оценка коэффициента β1 модели регрессии определяется по формуле:
В связи с тем, что переменная у зависит от случайной компоненты ε (yi=β0+β1xi+εi), то ковариация между зависимой переменной у и независимой переменной х может быть представлена следующим образом:
Для дальнейших преобразования используются свойства ковариации:
1) ковариация между переменной х и константой С равна нулю: Cov(x,C)=0, C=const;
2) ковариация переменной х с самой собой равна дисперсии этой переменной: Cov(x,x)=G2(x).
Исходя из указанных свойств ковариации, справедливы следующие равенства:
Cov(x,β0)=0 (β0=const);
Cov(x, β1x)= β1*Cov(x,x)= β1*G2(x).
Шпаргалка подготовлена в соответствии с программой учебного курса «Экономическая статистика». В пособии кратко изложены ответы на вопросы по данной дисциплине, достаточные для ответа на экзамене или зачете. Пособие поможет в короткие сроки повторить ранее изученный материал, а также эффективно подготовиться к сдаче экзамена или зачета по данному предмету.Издание предназначено студентам экономических специальностей.
Что такое политический бизнес, как экономическая власть превращается в политическую, во что обходится рядовым налогоплательщикам «буржуазная демократия» — эти и многие другие аналогичные вопросы рассматриваются в настоящей работе. Центральное место в ней уделяется исследованию той роли, которую играют в политической жизни современного буржуазного общества деньги. Подробно анализируются скрытые пружины власти монополистического капитала, показывается, каким образом ему удается подчинить себе государственную машину.
Основная цель книги — характеристика механизма современных международных экономических отношений в капиталистическом мире, вызвавших на рубеже 80-х годов беспрецедентное обострение торговой войны. В книге показаны агрессивная стратегия и тактика монополий на мировом рынке, их новые наступательные средства конкурентной борьбы, массовые злоупотребления, принуждение партнеров и завуалированный грабеж. Рассматривается противоречивая роль правительств стран Запада в этой борьбе — форсирование экспорта и сдерживание импорта, резко обостряющие торговое соперничество и превращающие столкновения монополий в непрерывную цепь межгосударственных конфликтов.
Эта книга о глобализации и о лидерстве. Она о том, что человек, как бы ни были малы его шансы на успех, способен трансформировать окружающий его мир. Каждый из ее героев был основателем эпохи в мировой истории. Каждый сыграл огромную роль в истории своего народа и мира в целом. Все вместе они объединили и тесно переплели мир, сделав его таким, каким мы видим и знаем его сегодня.Книга рассказывает, как им это удалось, какими качествами они обладали, что именно делали, какими принципами руководствовались при принятии решений, как распознали подходящий для глобальных преобразований момент и может ли их опыт помочь нам в решении актуальных экономических и политических проблем.
В настоящей книге выдающийся отечественный экономист, философ и политический деятель А. А. Богданов (1873–1928) рассматривает последовательные фазы хозяйственного развития общества и характеризует каждую эпоху по следующему плану: 1) состояние техники, или отношения человека к природе; 2) формы общественных отношений в производстве и 3) в распределении; 4) психология общества, развитие его идеологии; 5) силы развития каждой эпохи, которые обусловливают смену хозяйственных систем и последовательные переходы от первобытного коммунизма и патриархально-родовой организации общества к рабовладельческому строю, феодализму, мелкобуржуазному строю, эпохе торгового капитала, промышленному капитализму и, наконец, социализму.Марксистские основы учения, наряду со сжатостью и общедоступностью изложения, доставили книге широкую популярность в России, и еще недавно она могла считаться наиболее распространенным пособием при изучении экономической науки не только среди рабочих, но и в широких кругах учащейся молодежи.http://ruslit.traumlibrary.net.
Предупреждение: Это ЗАКАЗНАЯ статья, написанная группой экспертов по специальному заказу "Агентства РиФ". Авторы статьи не являются сторонниками т.н. "толерантности" и "взвешенного баланса информации". Агентство не преследует целей навязывания своей точки зрения и прочих противозаконных действий. Восприятие содержания публикации производится исключительно добровольным волеизъявлением. Вы можете прекратить чтение текста и включить телевизор в любой момент по вашему желанию.http://www.rf-agency.ru/acn/stat_ru/.
Несмотря на название, навевающее образ очередного малосодержательного эмоционального памфлета, паразитирующего на проблемах американской и мировой экономики последних лет, книга не имеет ничего общего с легковесной сенсационностью. Это серьезный, глубокий и продуманный анализ экономической, политической и военной истории и, что особенно важно, поведения людей, начиная с Французской революции и до наших дней. В книге препарируется экономика Японии - начиная с 1980-х гг… прослежены действия Алана Гринспена - с 1987 г., и самое интересное - анализируются последствия неизбежного в самом ближайшем будущем события, обещающего стать переломным в новейшей истории.