Отличная квантовая механика - [14]
Упражнение 1.16. Предположим, вам дан единственный экземпляр квантовой системы, находящейся в одном из двух неортогональных состояний |a⟩ и |b⟩. Вам известно, что это за состояния, но вы не знаете, в каком именно из них находится система.
a) Покажите, что невозможно построить устройство, которое всегда достоверно определяло бы состояние системы.
b) * Покажите, что можно сконструировать измерительное устройство, которое будет выдавать, с некоторой вероятностью, результаты трех типов: «определенно |a⟩», «определенно |b⟩» и «не уверен», причем результаты первых двух типов всегда будут верными.
Подсказка: попробуйте использовать неполяризующий светоделитель — оптический элемент, который случайным образом либо пропускает, либо отражает фотон вне зависимости от его поляризации.
1.5. Квантовая интерференция и дополнительность
Рассмотрим эксперимент, показанный на рис. 1.3. Единичный фотон, находившийся первоначально в диагонально поляризованном состоянии
попадает в устройство, известное как интерферометр[19]. Сначала PBS пропускает горизонтальный компонент состояния и отражает вертикальный. Затем отраженный компонент проходит через варьируемую линию задержки[20], и оба компонента вновь соединяются при помощи еще одного PBS. После этого состояние на выходе интерферометра подвергается измерению в диагональном базисе.Линия задержки вводит разницу между оптической длиной пути вертикального и горизонтального компонентов. Если длина этой линии равна l, то вертикальный компонент получит сдвиг фазы на ϕ = kl по отношению к горизонтальному, где k = 2π/λ есть волновое число. В результате фотон, выходя из интерферометра, будет в состоянии
Мы изучили измерение этого состояния в упр. 1.14 и выяснили, что вероятности срабатывания детекторов «+» и «−» составляют
соответственно. При изменении длины линии задержки вероятности меняются синусоидально. Иными словами, мы увидим интерференционные полосы — такие же, какие в таком оптическом устройстве образовала бы макроскопическая волна.Что в этом выводе поистине замечательно (и, разумеется, целиком и полностью подтверждено экспериментально), так это то, что интерференционные полосы порождает один-единственный фотон. Это решительно противоречит нашим интуитивным представлениям. Действительно, в классическом эксперименте интерференция возникает потому, что две волны, проходящие по двум путям интерферометра, получают разные фазы и затем складываются когерентно на фотодетекторах. Но в нашем эксперименте присутствует всего один фотон! Фотон — неделимая элементарная частица света, поэтому он не может расщепиться[21] в интерферометре и породить две волны, необходимые для образования интерференционных полос. Он должен двигаться в одиночестве либо по верхнему, либо по нижнему пути интерферометра — но не по двум путям одновременно.
Эти разумные и интуитивно понятные доводы противоречат и нашим расчетам, и экспериментальным наблюдениям. Как можно это объяснить?
Фотон, попадающий в интерферометр, находится в суперпозиции состояний вертикальной и горизонтальной поляризации. После первого PBS он по-прежнему находится в состоянии суперпозиции — но теперь это также суперпозиция верхнего и нижнего путей интерферометра. После воссоединения путей она вновь превращается в суперпозицию состояний поляризации — но уже с фазовым сдвигом у одного из ее компонентов. Именно эти два компонента суперпозиции играют здесь роль двух волн из классического эксперимента и интерферируют друг с другом. Так проявляется корпускулярно-волновой дуализм (wave-particle duality) квантовых частиц[22].
Получается, что в определенном смысле фотон все-таки расщепляется между двумя каналами интерферометра. Однако такое волноподобное поведение возможно только в том случае, если компоненты остаются в состоянии суперпозиции. Чтобы это проиллюстрировать, предположим, что в обоих каналах интерферометра мы размещаем детекторы, способные регистрировать фотоны, не разрушая их. Всякий раз, когда какой-нибудь фотон попадает в интерферометр, один из этих детекторов срабатывает и показывает нам, по верхнему или по нижнему пути прошел фотон. Таким способом, как сказали бы отцы-основатели квантовой механики, мы получаем о фотоне информацию Welcher Weg[23].
Получение информации Welcher Weg означает измерение положения фотона. В предыдущем разделе мы узнали, что такое измерение схлопывает состояние суперпозиции и превращает его, в зависимости от результата, либо в фотон, находящийся на верхнем, либо в фотон, находящийся на нижнем пути интерферометра. Глядя на детектор Welcher Weg, наблюдатель может точно сказать, в каком состоянии — горизонтальном или вертикальном — фотон выйдет из интерферометра. Так или иначе, последующее измерение этого фотона в диагональном базисе выдаст тот или другой результат с вероятностью 1/2 независимо от разности хода. Таким образом измерение
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.