Отличная квантовая механика - [10]
, это же соотношение должно выполняться и для фотонов. По формуле Планка он нашел[11]p = ℏω/c. Выразив частоту волны через ее длину, он получил ω = 2πc/λ, а затем записал
p = 2πℏ/λ.
Артур Холли Комптон в 1923 г. использовал результаты Эйнштейна для теоретического объяснения собственных экспериментов, в которых он исследовал рассеяние рентгеновских лучей на свободных электронах[12]. Рассматривая фотоны рентгеновского излучения как частицы высоких энергий, он применил законы сохранения энергии и импульса к столкновению между фотоном и электроном, чтобы рассчитать энергию рассеянных фотонов в зависимости от угла рассеяния. Затем он соотнес эту энергию с длиной волны — и получил теоретическое описание для своих экспериментальных данных. Увиденное им превосходное совпадение тех и других стало служить наглядным доказательством существования фотона.
Интересно отметить, что термина «фотон» в то время не существовало. Его ввел в 1926 г. специалист по физической химии Гильберт Льюис[13].
Например, если A>H = A>V и ϕ>H = ϕ>V = 0, то соответствующая классическая волна выглядит как
т. е. линейно поляризована под углом +45°. Соответственно, состояние (где делитель связан с нормированием) обозначает единичный фотон с линейной поляризацией под +45°. В табл. 1.1 вы можете увидеть еще несколько примеров[14].Из этого следует, что состояния |H⟩ и |V⟩ образуют в гильбертовом пространстве поляризационных состояний фотона ортонормальный базис — т. е. пространство двумерно. Действительно, прежде всего эти состояния ортогональны и потому линейно независимы (упр. A.17). Кроме того, любая поляризованная классическая волна может быть записана в виде (1.1), так что любое поляризационное состояние фотона тоже может быть записано аналогично (1.2), т. е. как линейная комбинация состояний |H⟩ и |V⟩. Мы будем называть базис {|H⟩,|V⟩} каноническим базисом нашего гильбертова пространства.
Упражнение 1.3. Покажите, что:
a) поляризационные состояния ±45° образуют ортонормальный базис;
b) правое и левое круговые поляризационные состояния образуют ортонормальный базис.
Упражнение 1.4. Разложите |H⟩ и |V⟩ по базисам {|+⟩,|—⟩} и {|R⟩,|L⟩}.
Упражнение 1.5. Разложите |a⟩ = |+30°⟩ и |b⟩ = |–30°⟩ по базисам {|H⟩,|V⟩}, {|+⟩,|—⟩} и {|R⟩,|L⟩}. Найдите скалярное произведение ⟨a|b⟩ во всех трех базисах, используя операцию перемножения матриц. Одинаковые ли получились результаты?
Здесь есть сложный момент, который следует прояснить. Множество углов поляризации линейно поляризованных фотонов — континуум. Но в случае одномерного движения частицы, о котором говорилось в предыдущем разделе, множество позиционных состояний — также континуум. Почему же мы говорим, что одно из этих гильбертовых пространств имеет размерность два, а другое — бесконечность?
Разница в том, что линейно поляризованные состояния могут быть записаны в виде (1.2), т. е. в виде суперпозиции других линейно поляризованных состояний. Если мы поместим поляризующий светоделитель (разд. В.2), пропускающий только горизонтально поляризованные фотоны, на пути диагонально поляризованной волны, часть ее пройдет сквозь светоделитель. Это означает, что диагонально поляризованный фотон может быть обнаружен в горизонтальном поляризационном состоянии.
Состояния же, связанные с разными положениями в пространстве, напротив, все ортогональны: частицу, приготовленную в состоянии |x = 3 м⟩, невозможно обнаружить в точке x = 4 м. Также невозможно записать позиционное состояние в виде суперпозиции других позиционных состояний. Это значит, что соответствующее гильбертово пространство должно иметь намного более широкий базис, чем гильбертово пространство поляризационных состояний.
Для классической волны (1.1) сдвиг фаз одновременно горизонтального и вертикального компонентов на равную величину (т. е. ϕ>H → ϕ>H + ϕ>0, ϕ>V → ϕ>V + ϕ>0, что эквивалентно умножению правой части на
не меняет ее поляризации.Аналогичное правило применимо и к квантовым состояниям. Умножение вектора состояния на eiϕ не меняет физической природы состояния. К примеру, |V⟩, i|V⟩ и —|V⟩ представляют один и тот же физический объект, как и, скажем,
и По этой причине мы на время пренебрежем множителем e−iωt в (1.2).Мы называем комплексную величину eiϕ с действительным ϕ фазовым множителем. Умножение квантового состояния на фазовый множитель называется применением фазового сдвига на ϕ. Соответственно мы говорим, что применение фазового сдвига к квантовому состоянию не меняет его физических свойств. Как мы увидим в следующем разделе, это правило оказывается весьма общим: оно выполняется для всех физических систем, не только для электромагнитных волн. Разумеется, фазовый сдвиг должен быть глобальной природы (overall phase shift): если мы применим его только к части состояния, это состояние изменится. Например, если мы применим фазовый сдвиг на π/2 к вертикальному компоненту поляризованного под +45° фотона,
то получим — фотон с правой круговой поляризацией, т. е. физически отличный от первоначального объекта.Поляризация фотона — это реализация квантового бита (кубита)
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.