Отличная квантовая механика - [10]
, это же соотношение должно выполняться и для фотонов. По формуле Планка он нашел[11]p = ℏω/c. Выразив частоту волны через ее длину, он получил ω = 2πc/λ, а затем записал
p = 2πℏ/λ.
Артур Холли Комптон в 1923 г. использовал результаты Эйнштейна для теоретического объяснения собственных экспериментов, в которых он исследовал рассеяние рентгеновских лучей на свободных электронах[12]. Рассматривая фотоны рентгеновского излучения как частицы высоких энергий, он применил законы сохранения энергии и импульса к столкновению между фотоном и электроном, чтобы рассчитать энергию рассеянных фотонов в зависимости от угла рассеяния. Затем он соотнес эту энергию с длиной волны — и получил теоретическое описание для своих экспериментальных данных. Увиденное им превосходное совпадение тех и других стало служить наглядным доказательством существования фотона.
Интересно отметить, что термина «фотон» в то время не существовало. Его ввел в 1926 г. специалист по физической химии Гильберт Льюис[13].
Например, если A>H = A>V и ϕ>H = ϕ>V = 0, то соответствующая классическая волна выглядит как
Из этого следует, что состояния |H⟩ и |V⟩ образуют в гильбертовом пространстве поляризационных состояний фотона ортонормальный базис — т. е. пространство двумерно. Действительно, прежде всего эти состояния ортогональны и потому линейно независимы (упр. A.17). Кроме того, любая поляризованная классическая волна может быть записана в виде (1.1), так что любое поляризационное состояние фотона тоже может быть записано аналогично (1.2), т. е. как линейная комбинация состояний |H⟩ и |V⟩. Мы будем называть базис {|H⟩,|V⟩} каноническим базисом нашего гильбертова пространства.
Упражнение 1.3. Покажите, что:
a) поляризационные состояния ±45° образуют ортонормальный базис;
b) правое и левое круговые поляризационные состояния образуют ортонормальный базис.
Упражнение 1.4. Разложите |H⟩ и |V⟩ по базисам {|+⟩,|—⟩} и {|R⟩,|L⟩}.
Упражнение 1.5. Разложите |a⟩ = |+30°⟩ и |b⟩ = |–30°⟩ по базисам {|H⟩,|V⟩}, {|+⟩,|—⟩} и {|R⟩,|L⟩}. Найдите скалярное произведение ⟨a|b⟩ во всех трех базисах, используя операцию перемножения матриц. Одинаковые ли получились результаты?
Здесь есть сложный момент, который следует прояснить. Множество углов поляризации линейно поляризованных фотонов — континуум. Но в случае одномерного движения частицы, о котором говорилось в предыдущем разделе, множество позиционных состояний — также континуум. Почему же мы говорим, что одно из этих гильбертовых пространств имеет размерность два, а другое — бесконечность?
Разница в том, что линейно поляризованные состояния могут быть записаны в виде (1.2), т. е. в виде суперпозиции других линейно поляризованных состояний. Если мы поместим поляризующий светоделитель (разд. В.2), пропускающий только горизонтально поляризованные фотоны, на пути диагонально поляризованной волны, часть ее пройдет сквозь светоделитель. Это означает, что диагонально поляризованный фотон может быть обнаружен в горизонтальном поляризационном состоянии.
Состояния же, связанные с разными положениями в пространстве, напротив, все ортогональны: частицу, приготовленную в состоянии |x = 3 м⟩, невозможно обнаружить в точке x = 4 м. Также невозможно записать позиционное состояние в виде суперпозиции других позиционных состояний. Это значит, что соответствующее гильбертово пространство должно иметь намного более широкий базис, чем гильбертово пространство поляризационных состояний.
Для классической волны (1.1) сдвиг фаз одновременно горизонтального и вертикального компонентов на равную величину (т. е. ϕ>H → ϕ>H + ϕ>0, ϕ>V → ϕ>V + ϕ>0, что эквивалентно умножению правой части на
Аналогичное правило применимо и к квантовым состояниям. Умножение вектора состояния на eiϕ не меняет физической природы состояния. К примеру, |V⟩, i|V⟩ и —|V⟩ представляют один и тот же физический объект, как и, скажем,
Мы называем комплексную величину eiϕ с действительным ϕ фазовым множителем. Умножение квантового состояния на фазовый множитель называется применением фазового сдвига на ϕ. Соответственно мы говорим, что применение фазового сдвига к квантовому состоянию не меняет его физических свойств. Как мы увидим в следующем разделе, это правило оказывается весьма общим: оно выполняется для всех физических систем, не только для электромагнитных волн. Разумеется, фазовый сдвиг должен быть глобальной природы (overall phase shift): если мы применим его только к части состояния, это состояние изменится. Например, если мы применим фазовый сдвиг на π/2 к вертикальному компоненту поляризованного под +45° фотона,
Поляризация фотона — это реализация квантового бита (кубита)

Новая книга профессора Московского университета Г. А. Федорова-Давыдова написана в научно-популярной форме, ярко и увлекательно. Она представляет собой очерки истории денежного дела в античных государствах Средиземноморья, средневековой Западной Европе, странах Востока, на Руси (от первых «златников» и «сребреников» князя Владимира до реформ Петра 1)„ рассказывается здесь также о монетах нового времени; специальный раздел посвящен началу советской монетной чеканки. Автор показывает, что монеты являются интересным и своеобразным историческим источником.

Книга в легкой и доступной форме рассказывает об истории электротехники и немного касается самого начального этапа радиотехники. Автор дает общую картину развития знаний об электричестве, применения этих знаний в промышленности и технике. В книге содержится огромное количество материала, рисующего как древнейшие времена, так и современность с её проблемами науки и техники. В русской литературе — это первая попытка дать читателю систематическое изложение накопленных в течение веков фактов, которые представляют грандиозный путь развития учения об электричестве и его практического применения.

Когда у собеседников темы для разговора оказываются исчерпанными, как правило, они начинают говорить о погоде. Интерес к погоде был свойствен человеку всегда и надо думать, не оставит его и в будущем. Метеорология является одной из древнейших областей знания Книга Пфейфера представляет собой очерк по истории развития метеорологии с момента ее зарождения и до современных исследований земной атмосферы с помощью ракет и спутников. Но, в отличие от многих популярных книг, освещающих эти вопросы, книга Пфейфера обладает большим достоинством — она знакомит читателя с интереснейшими проблемами, которые до сих пор по тем или иным причинам незаслуженно мало затрагиваются в популярной литературе.

Сорняки — самые древние и злостные враги хлебороба. Зеленым пожаром охвачены в настоящее время все земледельческие районы земного шара. В книге рассказывается об истории и удивительной жизненной силе сорных растений, об ожесточенной борьбе земледельца с сорняками и путях победы над грозным противником. - Книга в увлекательной и популярной форме рассказывает о борьбе с самым древним и злостным врагом хлеборобов — сорняками (первое издание — 1981 г). В ней даны сведения об истории и биологии сорняков, об их взаимоотношениях с культурными растениями.

Пчелы гораздо древнее, чем люди: когда 4–5 миллионов лет назад предшественники Homo sapiens встретились с медоносными пчелами, те жили на Земле уже около 5 миллионов лет. Пчелы фигурируют в мифах и легендах Древних Египта, Рима и Греции, Индии и Скандинавии, стран Центральной Америки и Европы. От повседневной работы этих трудолюбивых опылителей зависит жизнь животных и людей. Международная организация The Earthwatch Institute официально объявила пчел самыми важными существами на планете, их вымирание будет означать конец человечества.

Многие традиционные советы о том, как преуспеть в жизни, логичны, обоснованны… и откровенно ошибочны. В своей книге автор собрал невероятные научные факты, объясняющие, от чего на самом деле зависит успех и, что самое главное, как нам с вами его достичь. Для широкого круга читателей.