Отличная квантовая механика - [9]
Чтобы разобраться в понятии состояния, рассмотрим следующую физическую систему: массивную частицу, которая может двигаться вдоль координатной оси x. С одной стороны, возможно определить ее квантовое состояние, сказав, что «координата частицы — в точности x = 5 м». Это допустимое определение; мы будем обозначать такое состояние как |x = 5 м⟩. Еще одно допустимое состояние можно обозначить как |x = 3 м⟩. Эти состояния ортогональны (⟨x = 5 м| x = 3 м⟩ = 0), потому что «несовместимы»: если достоверно известно, что координата частицы равна 5 м, она не может быть обнаружена в состоянии x = 3 м. Еще один пример допустимого квантового состояния, в котором частица может находиться, — это «движется со скоростью 𝑣 = 4 м/с». Поскольку в таком состоянии импульс частицы известен точно, ее координата остается полностью неопределенной — т. е. данная частица может быть с некоторой вероятностью обнаружена в точке x = 5 м. Следовательно, скалярное произведение ⟨x = 5 м| 𝑣 = 4 м/с⟩ не равно нулю; эти состояния не являются несовместимыми.
Данный постулат гласит также, что если |x = 5 м⟩ и |x = 3 м⟩ — допустимые квантовые состояния, то состояние
(где — нормирующий множитель, объяснение см. в упр. 1.1) также является допустимым. Называется оно суперпозицией состояний. Для большей наглядности скажем, что если |кошка жива⟩ и |кошка мертва⟩ — допустимые состояния физической системы «кошка», то допустима и суперпозиция этих состояний[5].Являются ли суперпозиции состояний математической абстракцией или они каким-то образом отражаются в физическом поведении системы? Верно, конечно же, второе. Как мы вскоре увидим, если подвергнуть, например, кошку в состояниях
и просто случайную смесь состояний |кошка жива⟩ и |кошка мертва⟩ квантовому измерению, то результаты мы будем наблюдать совершенно разные.Напрашивается еще один вопрос. Мы не видим состояний суперпозиции в повседневной жизни — хотя они полностью совместимы с канонами квантовой механики. Почему? Как мы узнаем из следующей главы, дело в том, что суперпозиции макроскопически различных состояний чрезвычайно хрупки и быстро переходят в один из своих компонентов — в случае кошки Шрёдингера та быстро становится либо живой, либо мертвой. В микроскопическом мире, однако, состояния суперпозиции относительно устойчивы и нужны для физического описания системы. Необходимость иметь дело с объектами, само существование которых вступает в противоречие с нашим повседневным опытом, — одна из причин того, почему квантовая механика так сложна для понимания.
Упражнение 1.1. Чему равен нормирующий множитель 𝒩 состояния кошки Шрёдингера |ψ⟩ = 𝒩 [2|жива⟩ + i|мертва⟩], гарантирующий, что |ψ⟩ — физическая система?
Упражнение 1.2. Какова размерность гильбертова пространства, связанного с одной кинетической степенью свободы массивной частицы?
Подсказка: если вам кажется, что ответ очевиден, загляните в решение.
1.3. Поляризация фотона
Мы начнем изучение квантовой механики с одной из простейших физических систем: поляризации фотона[6]. Размерность гильбертова пространства этой системы равна всего лишь двум, но этого вполне достаточно, чтобы показать, насколько поразительным может быть мир квантовой механики.
Предположим, что мы в состоянии выделить единичную частицу света — фотон — из поляризованной волны. Фотон — микроскопический объект, поэтому рассматривать его следует в рамках квантовой механики. Начнем с того, что определим связанное с ним гильбертово пространство. Для начала отметим, что горизонтально поляризованное состояние фотона, которое мы обозначим |H⟩, несовместимо с его вертикально поляризованным состоянием |V⟩: фотон |H⟩ невозможно обнаружить в состоянии |V⟩. То есть если мы приготовим горизонтально поляризованный фотон и прогоним его через поляризующий светоделитель (PBS, polarizing beam splitter) — оптический элемент, описанный в разд. В.2, то данный фотон во всех случаях будет проходить насквозь, а отражаться не будет никогда. Это означает, что состояния |H⟩ и |V⟩ ортогональны.
Мы постулируем, что световая волна, электрическое поле которой задано в виде функции координаты и времени [см. (В.2)]
(с действительными A>H,V и ϕ>H,V), состоит из фотонов в состоянии[7]
Отступление 1.1. Открытие фотона
В 1900 г. Макс Планк объяснил экспериментально наблюдаемый спектр излучения абсолютно черного тела, введя понятие кванта света, который мы сегодня знаем как фотон[8]. Он обнаружил, что хорошее совпадение теории и эксперимента можно получить, если считать, что энергия фотона пропорциональна частоте ω световой волны. Коэффициент пропорциональности ℏ = 1,05457148 × 10>−34 получил название постоянной Планка.
В 1905 г. Альберт Эйнштейн еще раз подтвердил обоснованность формулы Планка
E = ℏω,
воспользовавшись ей для количественного объяснения экспериментальных результатов по фотоэлектрическому эффекту (более подробно см. отступление 4.6[9]. Позже, в 1916 г., Эйнштейн сделал вывод, что, поскольку из классической электродинамики[10] известно, что электромагнитный волновой пакет, несущий энергию E, несет также импульс p = E/c
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.