Обратные вызовы в C++ - [47]

Шрифт
Интервал


>  private:

>    SensorContainer* sensorContainer_;   // (1)

>    CommandQueue* commandQueue_;         // (2)

>    AlertControl* alertControl_;         // (3)

>    bool isInitialized_;                 // (4)

>    DriverPointer driver_;               // (5)


>    void checkInitialize();  // (6)

>    void checkDriver();      // (7)

>};


>}; //namespace sensor


В строке 1 объявлен контейнер для хранения датчиков, в строке 2 – класс для выполнения асинхронных запросов, в строке 3 – класс для отслеживания пороговых значений. Соответствующие указатели создаются в конструкторе и уничтожаются в деструкторе. Индикатор 4 указывает, была ли выполнена инициализация.

В строке 6 объявлен вспомогательный метод, который проверяет, была ли выполнена инициализация (если нет, выбрасывает исключение). В строке 7 аналогичный метод проверяет, был ли установлен драйвер.


Рассмотрим, как здесь используются обратные вызовы. Для начала самый простой случай – чтение показаний работоспособных датчиков (Листинг 99).

Листинг 99. Обратные вызовы в классе, реализующем интерфейс (SensorControl.cpp)

>void SensorControl::readSensorValues(SensorValueCallback callback)

>{

>  checkInitialize();  // (1)


>  sensorContainer_->forEachSensor([callback](SensorNumber number, SensorPointer sensor)  // (2)

>    {

>      if (sensor->isOperable())  // (3)

>      {

>        callback(number, sensor->getValue());  // (4)

>      }

>    }

>  );

>}


В строке 1 производится проверка, инициализирован ли класс. Если класс не проинициализирован, то функция выбросит исключение.

В строке 2 происходит перебор элементов контейнера, в качестве обратного вызова используется лямбда-выражение. Контейнер будет вызывать лямбда-выражение, в которое он будет передавать номер датчика и указатель на экземпляр класса. В теле выражения проверяется, является ли датчик работоспособным (строка 3), и если да, то выполняется соответствующий обратный вызов (строка 4).


Рассмотрим теперь поиск максимального и минимального значения для заданного диапазона номеров датчиков. Вначале разработаем вспомогательный класс, который будет последовательно принимать на вход показания датчиков и искать среди них максимальное и минимальное значение (Листинг 100).

Листинг 100. Класс для анализа минимального и максимального значения (SensorControl.cpp)

>class FindMinMaxValue

>{

>public:

>  enum MinMaxSign { MIN_VALUE = 0, MAX_VALUE = 1 };  // (1)


>  FindMinMaxValue(SensorNumber first, SensorNumber last, MinMaxSign sign) :  // (2)

>    sign_(sign), first_(first), last_(last), count_(0)

>  {

>    if (sign == MIN_VALUE)

>    {

>      result_ = std::numeric_limits::max();  // (3)

>    }

>    else

>    {

>      result_ = std::numeric_limits::min();  // (4)

>    }


>    arrayFunMinMax_[MIN_VALUE] = &FindMinMaxValue::CompareMin;  // (5)

>    arrayFunMinMax_[MAX_VALUE] = &FindMinMaxValue::CompareMax;  // (6)

>  }


>  void operator()(SensorNumber number, SensorPointer sensor)                  // (7)

>  {

>    if ( sensor->isOperable() && (number >= first_ && number <= last_) )  // (8)

>    {

>        (this->*arrayFunMinMax_[sign_])(sensor->getValue());              // (9)

>        count_++;                                                         // (10)

>    }

>  }

>  SensorValue result() { return result_; }  // (11)

>  size_t count() { return count_; }         // (12)

>private:

>  SensorNumber first; // (13)

>  SensorNumber last;  // (14)

>  MinMaxSign sign;    // (15)

>  SensorValue result; // (16)

>  size_t count;       // (17)


>  using FunMinMax = void (FindMinMaxValue::*)(SensorValue value);  // (18)


>  void CompareMin(SensorValue value)  // (19)

>  {

>      if (result_ > value)

>      {

>          result_ = value;

>      }

>  }


>  void CompareMax(SensorValue value)  // (20)

>  {

>    if (result_ < value)

>    {

>      result_ = value;

>    }

>  }


>  FunMinMax arrayFunMinMax_[2];       // (21)

>};


В строке 2 объявлен конструктор, который принимает на вход следующие параметры: минимальное значение диапазона номеров; максимальное значение диапазона номеров; параметр, указывающий, что необходим поиск минимального либо максимального значения. В конструкторе инициализируются переменные класса: минимальное значение диапазона (объявлено в строке 13); максимальное значение диапазона (объявлено в 14); параметр для поиска (объявлено в 15); итоговый результат (объявлено в 16); количество датчиков, которые участвовали в поиске (объявлено в 17). В зависимости от переданного параметра начальный результат инициализируется соответственно максимальным либо минимальным значением (строки 3 и 4). Кроме того, инициализируется массив указателей на функцию (строки 5 и 6, объявление в 21). Данные функции предназначены для сравнения и запоминания максимального либо минимального значений (объявлены в 19 и 20).

Анализ очередного значения происходит в перегруженном операторе 7. На вход подаются номер датчика и указатель на датчик. Если датчик работоспособный и его номер попадает в заданный диапазон номеров (строка 8), то в зависимости от параметра поиска через указатель вызывается соответствующая функция для анализа (строка 9), а также увеличивается счетчик просмотренных датчиков (строка 10). Функции 11 и 12 возвращают итоговые результаты.


Рекомендуем почитать
Изучаем Java EE 7

Java Enterprise Edition (Java EE) остается одной из ведущих технологий и платформ на основе Java. Данная книга представляет собой логичное пошаговое руководство, в котором подробно описаны многие спецификации и эталонные реализации Java EE 7. Работа с ними продемонстрирована на практических примерах. В этом фундаментальном издании также используется новейшая версия инструмента GlassFish, предназначенного для развертывания и администрирования примеров кода. Книга написана ведущим специалистом по обработке запросов на спецификацию Java EE, членом наблюдательного совета организации Java Community Process (JCP)


Геймдизайн. Рецепты успеха лучших компьютерных игр от Super Mario и Doom до Assassin’s Creed и дальше

Что такое ГЕЙМДИЗАЙН? Это не код, графика или звук. Это не создание персонажей или раскрашивание игрового поля. Геймдизайн – это симулятор мечты, набор правил, благодаря которым игра оживает. Как создать игру, которую полюбят, от которой не смогут оторваться? Знаменитый геймдизайнер Тайнан Сильвестр на примере кейсов из самых популярных игр рассказывает как объединить эмоции и впечатления, игровую механику и мотивацию игроков. Познакомитесь с принципами дизайна, которыми пользуются ведущие студии мира! Создайте игровую механику, вызывающую эмоции и обеспечивающую разнообразие.


Обработка событий в С++

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


MFC и OpenGL

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Симуляция частичной специализации

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Питон — модули, пакеты, классы, экземпляры

Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.