Математики тоже шутят - [4]

Шрифт
Интервал

История случилась весной несколько лет назад в ГЗ МГУ [3].

На мехмате деканом был как и сейчас Олег Борисович Лупанов («Самый лучший из деканов — наш декан Олег Лупанов»).

Ведет дискретную математику и матлогику. Но для полного понимания истории надо особо отметить одну вещь: он маленького роста (не карлик, но 1 м 50 см в нем вряд ли наберется). И вот, после пары, народ пулей летит в лифт, лифт моментально наполняется. А в углу лифта, закрытый широкими спинами студентов, стоял наш декан. Лифт битком. И вот кто-то подбегает к лифту и, указывая в угол, говорит:

— Ну подвиньтесь! Там ведь пустое место!

Все улыбаются. И тут из глубины лифта голос:

— Я не пустое место! Я — ваш декан!

31. Дефект обучения

Еще одна история из всемирной паутины.

Немецкий математик Феликс Клейн (1849–1925), вплотную занимавшийся вопросами математического обучения, перед началом первой мировой войны организовал международную комиссию по реорганизации преподавания. Занимаясь немецкими гимназиями, он присутствовал на нескольких уроках. На одном из них, когда речь зашла о Копернике, Клейн спросил:

— Когда родился Коперник?

В дальнейшем дискуссия протекала следующим образом.

— Если не знаете даты рождения и смерти, скажите, хотя бы, в каком веке он жил? — спросил Клейн.

Гробовое молчание.

— Скажите, жил он до нашей эры или нет? — вновь спросил Клейн.

— Конечно, до нашей эры, — ответил класс с твердым убеждением.

Клейн отмечает: «Школа должна была добиться, чтобы ученики, отвечая на этот вопрос, хотя бы, не употребляли слово "конечно"».

32. Строгое определение

Отвечая на вопрос, что такое математика, известный русский математик Андрей Марков (1856–1922) сказал: «Математика — это то, чем занимаются Гаусс, Чебышев, Ляпунов, Стеклов и я».

33. Когда калькуляторов еще не было

Знаменитый французский математик, «князь дилетантов» Пьер Ферма (1601–1665) однажды получил письмо, в котором его спрашивали, является ли число 100895598169 простым. Ферма мгновенно ответил, что это двенадцатизначное число — произведение двух простых чисел 898423 и 112303.

34. Логарифмы и магия

Изобретатель логарифмов Джон Непер (1550–1617) имел репутацию чернокнижника и колдуна, чем он однажды остроумно воспользовался.

Как-то раз в его доме случилась кража. Виновником мог быть только кто-то из слуг, но кто именно, непонятно. И тогда Непер придумал хитрый ход. Собрав всех своих слуг, он объявил им, что его черный петух умеет читать тайные мысли людей и поэтому поможет ему найти вора. После этого Непер приказал слугам поодиночке заходить в темную комнату и касаться рукой сидящего там черного петуха. Как только вор коснется петуха-телепата, добавил он, тот громко закричит.

Слуги по очереди стали заходить «на прием» к петуху, но тот так и не закричал. Однако Непер легко вычислил вора, проверив руки испытуемых после петушиного «теста». Руки невиновных были испачканы золой, которой хитроумный хозяин предварительно обсыпал петуха. Злоумышленник же испугался ясновидящей птицы и, войдя к нему в комнату, не коснулся его. Поэтому его руки, в отличие от совести, были чистыми.

35. Разные решения

Однажды один студент попросил Джона фон Неймана (1903–1957) помочь ему вычислить какой-то интеграл. Немного подумав, тот дал ответ: «2π/5».

— Но, сэр, — расстроился студент, — ответ я могу и сам посмотреть в конце задачника. Мне непонятно, как взять этот интеграл!

— Хорошо, — ответил профессор, — дайте-ка я посмотрю еще разок. — После небольшой паузы он опять выдал: 2π/5.

— Профессор, — студент был близок к отчаянию, — ответ я и сам знаю. Я не понимаю, как он получается!

— Но, молодой человек, — искренне удивился фон Нейман. — Что Вы от меня хотите? Я решил вам эту задачу двумя разными способами!

36. Кратчайшим способом

Есть хорошо известная задача — о мухе и двух встречных поездах. Два поезда, между которыми 200 км, мчатся со скоростью 50 км/ч навстречу друг другу по одной колее. В начальный момент времени с ветрового стекла одного из локомотивов взлетает муха и со скоростью 75 км/ч летит навстречу другому. Долетев до него, она поворачивает и летит обратно, затем опять летит ко второму локомотиву и так далее. Спрашивается, какое расстояние в итоге пролетит муха до того момента, когда оба поезда, столкнувшись, раздавят ее в лепешку?

Эту задачу можно решать двумя способами: трудным, «в лоб», и легким. В первом случае, учитывая, что с каждым из поездов муха до своей нелепой гибели успеет встретиться бесконечно много раз, придется найти сумму бесконечного ряда расстояний, преодоленных мухой от одного поворота до другого. Это реально, но для получения ответа не обойтись без вычислений на бумаге и некоторого количества времени.

Легкое же решение можно проделать в уме: поезда находятся на расстоянии 200 км и сближаются с суммарной скоростью 100 км/ч. Значит, они столкнутся через 2 часа. Все это время муха находится в полете, летя со скоростью 75 км/ч. Поэтому она пролетит в итоге 150 км.

Когда знаменитому математику Джону фон Нейману приятель предложил эту задачу, то он, задумался лишь на мгновенье.

— Ну, конечно же, 150 км! — сказал он.


Еще от автора Сергей Николаевич Федин
Сказки для взрослых

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Фантастические рассказы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Детективы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Игры со словами

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Логические задачи для юного сыщика

В книге представлено 30 занимательных задач, направленных на развитие логики ребенка, тренировку внимания и умение нестандартно мыслить. Задачи даны в виде загадочных детективных историй, которые раскрывает детектив Бусля. Чтобы помочь великому сыщику, нужно внимательно прочитать текст или найти ответ в рисунке. Такая игра не только увлечет ребенка, но и станет прекрасным развитием его умственных способностей. Адресовано детям 7—12 лет.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.