Математики тоже шутят - [2]
(Цит. по книге: Kutzler B. B. Mathematikerwitze & Mathematikwitze. 2006; перевод Ю. Фролова.)
8. Скромный автор
Рассказывают, что знаменитый французский математик и просветитель Жан Даламбер (1717–1783) каждый раз, когда излагал студентам собственную теорему, неизменно говорил: «А сейчас, господа, мы переходим к теореме, имя которой я имею честь носить!» [1]
9. Решающий аргумент
С Даламбером связана еще одна забавная история. Как-то раз он обучал математике одного крайне бестолкового, но очень знатного ученика. После нескольких безуспешных попыток растолковать неучу доказательство простой теоремы, Даламбер в отчаянии воскликнул:
— Даю вам честное слово, месье, что эта теорема верна!
Ученик расстроено ответил:
— Почему же вы мне сразу так не сказали? Ведь вы — дворянин и я — дворянин; так что вашего слова для меня вполне достаточно.
10. Кратк-ть — сестр. тал.
Известный немецкий математик Дирихле (1895–1859) любил формулы гораздо больше слов и потому был очень молчаливым. Поэтому он обошелся без слов даже когда сообщал своему отцу телеграммой о рождении сына. В этой, наверное, самой короткой в мире телеграмме было написано вот что:
2 + 1 = 3
11. «Аббревиатурная» шутка
У одного из основателей современной топологии, академика Павла Сергеевича Александрова (1896–1982), было прозвище «Пёс». Своим появлением на свет оно обязано остроумной дарственной надписи. Ею Александров украсил экземпляр своей первой книги, подаренный другому незаурядному топологу, своему другу Павлу Самуиловичу Урысону: ПСУ от ПСА.
12. Последний шанс
Профессор Елена Сергеевна Вентцель была одновременно автором широко известного учебника по теории вероятностей и нескольких популярных повестей, написанных под псевдонимом И. Грекова (то есть ИГРЕКова). Долгие годы она преподавала в академии им. Жуковского вместе со своим мужем, генералом-майором авиации.
Однажды, спеша на лекцию, она пыталась втиснуться в переполненный дачный автобус.
— Поймите, я опаздываю на лекцию! Я профессор математики! — взывала она к совести водителя и пассажиров. — Если я сейчас не уеду, то лекция будет сорвана. — Все было напрасно.
— Я — генеральша! — в отчаянии крикнула она, исчерпав все аргументы.
Двери автобуса тут же отворились.
13. Неблагонадежная формулировка
Еще одна история про Е. С. Вентцель. В непринужденной обстановке Елена Сергеевна однажды вспомнила о бдительном редактировании ее первого задачника. В нескольких задачах шла речь о выявлении случайного брака при массовом производстве технической продукции, отпускаемой с завода большими партиями. Задача завершалась вопросом:
Какова вероятность того, что партия будет забракована?
Цензор предложил изъять столь опасную двусмысленность и согласился с противоположной:
Какова вероятность того, что партия НЕ будет забракована?
(Цит. по рукописи книги: Сворцов В. В. Лирические миниатюры. 2007.)
14. И в самом деле
Карл Фридрих Гаусс (1777–1855) не интересовался музыкой. Однажды его друг, тоже математик, но любивший музыку, повел его в концертный зал, чтобы послушать Девятую симфонию Бетховена.
После окончания концерта друг спросил Гаусса о его мнении.
— Ну и что это все доказывает? — ответствовал Гаусс.
(Цит. по книге: Kutzler B. B. Mathematikerwitze & Mathematikwitze. 2006; перевод Ю. Фролова.)
15. Меня нет дома
Известный французский физик и математик Андре Мари Ампер (1775–1836) был невероятно рассеян. Однажды, выходя из своего дома, он мелом написал на двери: «Господа! Хозяина нет дома, приходите вечером». Вскоре Ампер вернулся обратно, но, увидев на двери эту надпись, снова ушел. Домой он пришел поздно вечером.
16. Странная доска
Однажды Ампер гулял в парке, размышляя над какой-то сложной проблемой. Неожиданно прямо перед ним возникла черная доска. Ничуть не удивившись, он по привычке достал из кармана мел и стал записывать на ней вычисления. Через несколько минут доска так же неожиданно стала медленно удаляться. Ампер стал двигаться вслед за ней, продолжая исписывать свободное пространство формулами. Однако доска двигалась все быстрее и быстрее, так что ученому приходилось чуть ли не бежать за ней. В какой-то момент преследование стало невозможным, Ампер выдохся и только тут, наконец, очнулся. Приглядевшись, он увидел, что вожделенная доска оказалась задней стенкой большой черной кареты...
17. Коварный прием
Ампер всегда радушно принимал гостей, однако каждого обязательно усаживал за шахматы, к которым питал необычайную страсть. Утомившись от изнурительной партии, которая порой длилась не один час, или явно проигрывая, гость мог быстро завершить игру в свою пользу. Для этого достаточно было глубокомысленно сказать какую-нибудь наукообразную глупость вроде того, что хлор получается в результате окисления соляной кислоты, природа магнита не зависит от электричества и так далее. Ампера настолько огорчали подобные заявления, что он тут же терял нить игры и проигрывал выигрышную партию.
18. Железная логика
Однажды, когда Норберт Винер (1894–1964) шел по территории университетского городка, его остановил студент, у которого был какой-то математический вопрос. Остановившись, Винер некоторое время обсуждал со студентом проблему. Окончив, он спросил у собеседника:
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге представлено 30 занимательных задач, направленных на развитие логики ребенка, тренировку внимания и умение нестандартно мыслить. Задачи даны в виде загадочных детективных историй, которые раскрывает детектив Бусля. Чтобы помочь великому сыщику, нужно внимательно прочитать текст или найти ответ в рисунке. Такая игра не только увлечет ребенка, но и станет прекрасным развитием его умственных способностей. Адресовано детям 7—12 лет.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.