Математика. Утрата определенности. - [73]

Шрифт
Интервал

отличном от нуля. Следовательно, мы не можем полагать в (3) значение h равным нулю и делать из этого предположения какие бы то ни было выводы. Кроме того, в случае такой простой функции, как d = 4,9t>2, соотношение (2) после сокращения правой части на h переходит в соотношение (3). В случае же более сложных функций нам пришлось бы иметь дело с выражением типа (2). При h = 0 правая часть (2), выражающая предельное значение средней скорости k/h, обращается в неопределенность 0/0.

Ферма никогда не занимался обоснованием своего метода, и, хотя он по праву может быть назван одним из создателей математического анализа, ему не удалось продвинуться здесь особенно далеко. Он был достаточно осторожен, чтобы пытаться формулировать общие теоремы, если сознавал, что какая-либо идея не обоснована им полностью.{77} Ферма довольствовался тем, что предложил правильный алгоритм, которому смог дать геометрическую интерпретацию, и надеялся, что когда-нибудь удастся найти полное геометрическое обоснование предложенного им метода.

Второе понятие математического анализа, доставившее немало хлопот его создателям, — (определенный) интеграл — встречается, например, при вычислении площадей фигур, ограниченных целиком или частично кривыми линиями, объемом тел, ограниченных изогнутымиповерхностями (не плоскостями!), а также центров тяжести тел различной формы. Чтобы понять, какого рода трудности встречаются при использовании понятия определенного интеграла, рассмотрим вычисление площади криволинейной трапеции.

Предположим, требуется найти площадь криволинейной трапеции DEFG (рис. 6.1), ограниченной дугой FG кривой, задаваемой уравнением y = x>2, отрезком DE оси x и вертикальными отрезками DG и EF. В этом случае, как и при вычислении производной, мы хотим найти интересующую нас величину методом все более точных последовательных приближений. Нечто подобное предприняли математики XVII в.

Рис. 6.1. Криволинейная трапеция DEFG.

Разобьем отрезок DE на три равные части (каждая длиной h) и обозначим точки разбиения через D>1, D>2, и D>3 (точка D>3 совпадает с точкой E, рис. 6.2). Пусть y>1, y>2, и y>3 — ординаты в точках разбиения. Тогда y>1h, y>2h, и y>3h — площади трех прямоугольников, изображенных на рис. 6.2, а

y>1h + y>2h + y>3h (5)

— сумма площадей этих трех прямоугольников, являющаяся некоторым приближением к площади DEFG.

Рис. 6.2. Вычисление площади криволинейной трапеции (основание DE разбито на 3 части).

Лучшее приближение к площади криволинейной трапеции DEFG мы можем получить, уменьшая размеры прямоугольников и увеличивая их число. Предположим, что отрезок DE мы разбили не на три, а на шесть частей. На рис. 6.3, в частности, показано, что произойдет при таком разбиении со средним прямоугольником, изображенным на рис. 6.2: после разбиения его заменяют два прямоугольника. Поскольку за высоту каждого прямоугольника мы выбираем ординату y в соответствующей точке разбиения отрезка DE, заштрихованный прямоугольник на рис. 6.3 уже не входит в сумму площадей тех шести прямоугольников, которыми аппроксимируется теперь площадь криволинейной трапеции DEFG. Следовательно, сумма

y>1h + y>2h + y>3h + y>4h + y>5h + y>6h (6)

(где новое h в два раза меньше прежнего) дает более точное приближение к площади трапеции DEFG, чем сумма (5).

Рис. 6.3. Вычисление площади криволинейной трапеции DEFG (основание DE разбито на 6 частей)

Относительно применяемого нами метода последовательных приближений можно в общем сказать следующее. Разделив отрезок DE на n частей, мы получили бы n прямоугольников, каждый шириной h. Пусть y>1, y>2, …, y>n— ординаты в точках разбиения (многоточие означает, что включены все ординаты y в точках разбиения). Сумма площадей n прямоугольников равна

y>1h + y>2h + y>3h + … + y>nh (7)

(и на этот раз многоточие означает, что в сумму входят все промежуточные прямоугольники). Мы уже говорили о том, как влияет на точность приближения разбиение отрезка DE на все более мелкие части. Следовательно, приближенное значение площади криволинейной трапеции DEFG, задаваемое суммой (7), с увеличением n становится все более точным. Но по мере возрастания n убывает h, поскольку h = DE/n. Итак, мы установили, что фигуры, ограниченные отрезками прямых (в нашем случае — прямоугольниками), позволяют добиться все более точного приближенного вычисления площади фигуры, ограниченной кривой.

Интуитивно ясно, что, чем больше число прямоугольников, тем точнее сумма их площадей аппроксимирует площадь криволинейной фигуры. Но если остановиться на 50 или на 100 прямоугольниках, то сумма их площадей еще не будет в точности равна площади аппроксимируемой фигуры, и математикам XVII в., придумавшим этот подход к вычислению площадей, пришло в голову устремить n к бесконечности. Правда, в то время еще не было вполне ясно, что такое бесконечность. Можно ли считать бесконечность числом, и если да, то как производить арифметические действия над этим числом? Получив выражения (7) для суммы площадей n прямоугольников и обнаружив в них члены вида 1/n и 1/n>2, Ферма отбросил их на том основании, что, когда n обращается в бесконечность, эти члены пренебрежимо малы. Как и при выводе производной, Ферма полагал, что строго его идею удастся доказать скорее всего с помощью


Еще от автора Морис Клайн
Математика. Поиск истины.

Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.


Рекомендуем почитать
Геометрическая рапсодия

Перед читателями проходит история возникновения и развития основных идей геометрии, которые и сегодня приводят к новым взглядам и открытиям в кристаллографии, химии, геологии, генетике, микробиологии, архитектуре, строительстве, технике. Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии. Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию. Научно-художественная книга для широкого круга читателей.


Число, пришедшее с холода. Когда математика становится приключением

Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.


Путеводитель для влюбленных в математику

Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге.


Приключения математика

Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Как не ошибаться. Сила математического мышления

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.На русском языке публикуется впервые.