Математика. Утрата определенности. - [72]

Шрифт
Интервал

Две проблемы привлекали к себе внимание величайших математиков XVII в., наиболее известными среди которых были Кеплер (1571-1630), Декарт (1596-1650), Бонавентура Кавальери (1598-1647), Ферма (1601-1665), Блез Паскаль (1623-1662), Джеймс Грегори (1638-1675), Жиль Персон, называвший себя де Робервалем{76} (1602-1675), Христиан Гюйгенс (1629-1695), Исаак Барроу (1630-1677), Джон Валлис (1616-1703) и, конечно же, Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716). Каждый из этих ученых по-своему подошел к проблемам определения и вычисления производной и определенного интеграла. Одни из творцов дифференциального и интегрального исчисления рассуждали чисто геометрически, другие — чисто алгебраически, третьи использовали смешанный алгебро-геометрический подход. Нас будет интересовать, насколько создателям новых методов исчисления удалось приблизиться к образцам математической строгости. Для этого достаточно обратиться к нескольким наиболее типичным примерам, поскольку многие из предложенных методов были очень ограниченными и особого упоминания не заслуживают.

Природу производной легче всего понять, если представить ее как скорость (именно так поступил Ньютон). Если тело преодолевает расстояние 20 м за 4 с, то его средняя скорость равна 5 м/с, а если тело движется равномерно, то его средняя скорость на протяжении 4 с совпадает с мгновенной, т.е. со скоростью в любой данный момент. Однако движения чаще всего неравномерны. Тело, падающее на Землю, снаряд, вылетевший из пушки, планета, обращающаяся вокруг Солнца, — все движутся неравномерно: их скорость непрерывно меняется. Во многих случаях необходимо знать значения скорости движения в разные моменты времени. Например, жизненно важно знать, с какой скоростью пуля долетает до человека; если эта скорость близка к 0 м/с, то на землю упадет пуля, тогда как при скорости порядка 300 м/с на землю падает человек. По самому своему смыслу момент времени есть не что иное, как «нулевой промежуток» времени, а за нулевое время тело, разумеется, проходит равное нулю расстояние. Следовательно, если бы мы решили вычислять мгновенную скорость так, как вычисляют среднюю скорость, т.е. деля пройденное расстояние на требующееся для его прохождения время, то получили бы выражение 0/0, а такое отношение смысла не имеет.

Выход из создавшегося затруднения, который промелькнул в сознании математиков XVII в., но не был уяснен ими до конца, состоит в следующем. Предположим, что требуется вычислить скорость, которую приобретает свободно падающее тело ровно через 4 с после начала падения. Выбрав любой конечный промежуток времени (в отличие от нулевого промежутка — момента времени), в течение которого тело падает, и разделив на него расстояние, пройденное телом за это время, мы получим среднюю скорость за выбранный промежуток времени. Вычислим теперь среднюю скорость за промежутки времени, следующие за 4-й секундой и имеющие продолжительность >1/>2, >1/>4, >1/>8, … с. Ясно, что, чем меньше промежуток времени, тем ближе средняя скорость к мгновенной скорости тела через 4 с после начала падения. По-видимому, нам остается лишь вычислить средние скорости и посмотреть, к какой величине они стремятся. Эта величина и определяет мгновенную скорость, которой тело достигает к концу 4-й секунды свободного падения. Предложенная схема кажется достаточно разумной, хотя и таит в себе, как мы увидим в дальнейшем, некоторые сложности. Как бы то ни было, скорость к концу 4-й секунды свободного падения, если она вычислима, называется производной функции d = 4,9t>2 при t = 4.

Трудности, связанные с определением производной, станут более понятными, если от словесного описания производной перейти на язык символов. Математическое определение производной, которое, по существу, и было в конце концов принято, принадлежит Ферма. Вычислим скорость, приобретаемую через 4 с после начала свободного падения мячом, движение которого описывается функцией

d = 4,9t>2. (1)

При t = 4 получаем: d = 4,9∙4>2 = 78,4 м. Пусть h — приращение времени. За время (t + h) с мяч пролетит в свободном падении расстояние 78,4 м плюс некоторое дополнительное расстояние k. Следовательно,

78,4 + k = 4,9 (4 + h)>2 = 4,9(16 + 8h + h>2),

или

78,4 + k = 78,4 + 39,2h + 4,9h>2.

Вычтем из правой и левой частей последнего равенства по 78,4:

k = 39,2h + 4,9h>2.

Итак, средняя скорость за время h с свободного падения равна

k/h = (39,2h + 4,9h>2)/h. (2)

При рассмотрении этой простой функции и других функций Ферма повезло: числитель и знаменатель правой части ему удалось разделить на h, получив

k/h = 39,2 + h. (3)

Затем Ферма положил приращение h равным нулю и получил, что скорость тела через 4 с после начала свободного падения такова:

d>∙ = 39,2 м/с. (4)

(d>∙ — обозначение производной, предложенное Ньютоном). Итак, d>∙ — производная от d = 4,9t>2 при t = 4.

Против предложенного Ферма метода вычисления производной можно возразить, указав, что приращение h должно быть отлично от нуля, ибо выполнение таких операций, как деление числителя и знаменателя на h, возможно только при h, отличном от нуля. Но тогда и равенство (3) справедливо только при


Еще от автора Морис Клайн
Математика. Поиск истины.

Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.


Рекомендуем почитать
Число, пришедшее с холода. Когда математика становится приключением

Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.


Путеводитель для влюбленных в математику

Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге.


Приключения математика

Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Игра случая. Математика и мифология совпадения

Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.


Как не ошибаться. Сила математического мышления

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.На русском языке публикуется впервые.