Математика. Утрата определенности. - [5]
В конце 30-х годов XX в. математик мог бы принять один из нескольких вариантов оснований математики и заявить что проводимые им математические доказательства по крайней мере согласуются с догматами избранной им школы. Но тут последовал удар ужасающей силы: вышла в свет работа Курта Гёделя, в которой он среди прочих важных и значительных результатов доказал, что логические принципы, принятые различными школами в основаниях математики, не позволяют доказать ее непротиворечивость. Как показал Гёдель, непротиворечивость математики невозможно доказать, не затрагивая самих логических принципов, замкнутость которых весьма сомнительна. Теорема Гёделя вызвала смятение в рядах математиков. Последующее развитие событий привело к новым осложнениям. Оказалось, например, что даже аксиоматически-дедуктивный метод, столь высоко ценимый в прошлом как надежный путь к точному знанию, небезупречен. В результате этих открытий число различных подходов к математике приумножилось и математики разбились на еще большее число группировок.
В настоящий момент положение дел в математике можно обрисовать примерно так. Существует не одна, а много математик, и каждая из них по ряду причин не удовлетворяет математиков, принадлежащих к другим школам. Стало ясно, что представление о своде общепринятых, незыблемых истин — величественной математике начала XIX в., гордости человека — не более чем заблуждение. На смену уверенности и благодушию, царившим в прошлом, пришли неуверенность и сомнения в будущем математики. Разногласия по поводу оснований самой «незыблемой» из наук вызвали удивление и разочарование (чтобы не сказать больше). Нынешнее состояние математики — не более чем жалкая пародия на математику прошлого с ее глубоко укоренившейся и широко известной репутацией безупречного идеала истинности и логического совершенства.
Как думают некоторые математики, расхождения во мнениях относительно того, что следует считать настоящей математикой, когда-нибудь будут преодолены. Особое место среди тех, кто так считает, занимает группа ведущих французских математиков, пишущих под коллективным псевдонимом Никола Бурбаки:
С древнейших времен критические пересмотры оснований всей математики в целом или любого из ее разделов почти неизменно сменялись периодами неуверенности, когда возникали противоречия, которые приходилось решать… Но вот уже двадцать пять веков математики имеют обыкновение исправлять свои ошибки и видеть в этом обогащение, а не обеднение науки; это дает им право смотреть в будущее спокойно.
([2], с. 30.)
Но гораздо больше математиков настроены пессимистично. Один из величайших математиков XX в. Герман Вейль сказал в 1944 г.:
Вопрос об основаниях математики и о том, что представляет собой в конечном счете математика, остается открытым. Мы не знаем какого-то направления, которое позволит в конце концов найти окончательный ответ на этот вопрос, и можно ли вообще ожидать, что подобный «окончательный» ответ будет когда-нибудь получен и признан всеми математиками. «Математизирование» может остаться одним из проявлений творческой деятельности человека, подобно музицированию или литературному творчеству, ярким и самобытным, но прогнозирование его исторических судеб не поддается рационализации и не может быть объективным.
Говоря словами Гете, «история науки — это сама наука».
Разногласия по поводу того, что такое настоящая математика, и существование многочисленных вариантов оснований математики не только серьезно сказались на самой математике, но и оказали самое непосредственное влияние на физику. Как мы увидим, далее, наиболее развитые физические теории ныне полностью «математизированы». (Разумеется, выводы таких теорий интерпретируются посредством так или иначе наблюдаемых «чувственных», подлинно физических объектов: сидя у радиоприемников, мы слышим реальные голоса, чему не мешает отсутствие представления о том, что такое радиоволны.) Поэтому ученых — даже тех, кто не работает непосредственно над решением фундаментальных проблем, — не может не занимать вопрос о судьбах математики, которую они могут применять с уверенностью, не рискуя затратить годы на изыскания, некорректные в силу сомнительности использования математического аппарата.
Утрата критериев абсолютности истины, все возрастающая сложность математики и естественных наук, неуверенность в выборе правильного подхода к математике привели к тому, что большинство математиков оставили вопросы оснований. С проклятием «Чума на оба ваши дома!» они обратились к тем областям математики, где методы доказательства казались им надежными. Они нашли также, что проблемы, придуманные человеком, более привлекательны и легче поддаются решению, чем проблемы, поставленные природой.
Кризис математики и порожденные им конфликты по поводу того, что такое настоящая математика, отрицательно сказались и на применении математической методологии ко многим областям культуры: к философии, социальным и политическим наукам, этике и эстетике. Надежда на то, что удастся найти объективные, непреходящие законы и эталонные образцы знания, развеялась. «Век разума» закончился.
Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.