Математика. Утрата определенности. - [4]

Шрифт
Интервал

Для получения своих удивительных, мощных результатов математика использовала особый метод — метод дедуктивных выводов из небольшого числа самоочевидных принципов, называемых аксиомами; этот метод знаком каждому школьнику — прежде всего из курса геометрии. Природа дедуктивного вывода такова, что она гарантирует истинность заключения, если только истинны исходные аксиомы. Очевидная, безотказная и безупречная логика дедуктивного вывода позволила математикам извлечь из аксиом многочисленные неоспоримые и неопровержимые заключения. Эту особенность математики многие отмечают и поныне. Всякий раз, когда нужно привести пример надежных и точных умозаключений, ссылаются на математику.

Успехи, достигнутые математикой с помощью дедуктивного метода, привлекли к ней внимание величайших мыслителей. Математика наглядно продемонстрировала возможности и силу человеческого разума. Почему бы не воспользоваться, спросили мыслители, столь хорошо зарекомендовавшим себя дедуктивным методом для постижения истин там, где прежде безраздельно властвовали авторитет, традиция и привычка, — в философии, теологии, этике, эстетике и в социальных науках? Человеческий разум, столь эффективный в математике и в математической физике, мог бы стать арбитром помыслов и действий также и в других областях, приобщив их к красоте истины и истинности красоты. В эпоху, получившую название эпохи Просвещения (или Века разума), методология математики и даже некоторые математические понятия и теоремы были применены к другим областям человеческой деятельности.

Обращение к прошлому — плодотворный источник познания настоящего. Созданные в начале XIX в. необычные геометрии и столь же необычные алгебры вынудили математиков исподволь — и крайне неохотно — осознать, что и сама математика, и математические законы в других науках не есть абсолютные истины. Например, математики с досадой и огорчением обнаружили, что несколько различных геометрий одинаково хорошо согласуются с наблюдательными данными о структуре пространства. Но эти геометрии противоречили одна другой — следовательно, все они не могли быть одновременно истинными. Отсюда напрашивался вывод, что природа построена не на чисто математической основе, а если такая первооснова и существует, то созданная человеком математика не обязательно соответствует ей. Ключ к реальности был утерян. Осознание этой потери было первым из бедствий, обрушившихся на математику.

В связи с появлением уже упоминавшихся новых геометрий и алгебр математикам пришлось пережить шок и другого рода. Математики настолько уверовали в бесспорность своих результатов, что в погоне за иллюзорными истинами стали поступаться строгостью рассуждений. Но когда математика перестала быть сводом незыблемых истин, это поколебало уверенность математиков в безукоризненности их теорий. Тогда им пришлось взяться за пересмотр своих достижений, и тут они, к своему ужасу, обнаружили, что логика в математике совсем не так уж тверда, как думали их предшественники.

По существу развитие математики имело алогичный характер. Это алогичное развитие включало в себя не только неверные доказательства, но и пропуски в доказательствах и случайные ошибки, которых можно было бы избежать, если бы математики действовали более осмотрительно. Такие досадные изъяны отнюдь не были редки. Но алогичность развития математики заключалась также в неадекватном толковании понятий, в несоблюдении всех необходимых правил логики, в неполноте и недостаточной строгости доказательств. Иными словами, чисто логические соображения подменялись интуитивными аргументами, заимствованными из физики, апелляциями к наглядности и ссылками на чертежи.

Но и когда все это было установлено, математика по-прежнему оставалась эффективным средством описания природы. Кроме того, математика сохранила привлекательность и сама по себе как область чистого знания, и в умах многих, особенно пифагорейцев, являлась частью реальности, представляющей самостоятельный интерес.{6} Учитывая это, математики решили восполнить пробелы в логическом каркасе своей науки и перестроить заново те части ее, в которых обнаружились изъяны. Движение за математическую строгость приобрело широкий размах во второй половине XIX в. 

К началу XX в. математики стали склоняться к мнению, что желанная цель наконец достигнута. И хотя им пришлось признать, что математика дает лишь приближенное описание природы и многие утратили веру в то, что природа полностью основана на математических принципах, математики по-прежнему продолжали возлагать большие надежды на проводимую ими реконструкцию логической структуры математики. Но не успели смолкнуть восторги по поводу якобы достигнутых успехов, как в реконструированной математике в свою очередь обнаружились противоречия. Обычно эти противоречия принято называть парадоксами — эвфемизм, позволяющий тем, кто его использует, обходить молчанием кардинальное обстоятельство: там, где есть противоречия, там нет логики. 

Ведущие математики и философы начала XX в. сразу же попытались разрешить возникшие противоречия. В результате возникло четыре различных подхода к математике, которые были отчетливо сформулированы и получили значительное развитие; у каждого из этих подходов нашлось немало приверженцев. Все четыре направления математики стремились не только разрешить известные противоречия, но и гарантировать, что в будущем не появятся новые противоречия, т.е. старались доказать непротиворечивость математики. Интенсивная разработка оснований математики привела и к другим результатам. Приемлемость некоторых аксиом и принципов логики дедуктивного вывода также стала яблоком раздора: позиции школ по этим вопросам разошлись. 


Еще от автора Морис Клайн
Математика. Поиск истины.

Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.