Математика. Утрата определенности. - [36]

Шрифт
Интервал

Если нам не дано достичь полного знания о движении жидкости, то причину неудачи надлежит приписывать не механике и не недостаточности известных законов движения. Нам недостает [математического] анализа, поскольку вся теория движения жидкости теперь свелась к исследованию аналитических формул.

В действительности гидродинамика в том виде, в каком ее рассматривал Эйлер, была существенно неполной, и за последующие семьдесят лет в нее было внесено немало поправок и дополнений. Так, например, Эйлер полностью пренебрегал вязкостью. (Вода течет быстро и может считаться невязкой жидкостью, тогда как, скажем, масло течет медленно и обладает заметной вязкостью.{35}) Тем не менее мы можем с полным правом утверждать, что именно Эйлер стал основателем гидродинамики, применимой к движению судов и самолетов.

Если ученые XVIII в. нуждались в дополнительном подтверждении того, что мир основан на математических принципах и устроен наилучшим образом и что все творения природы созданы по замыслу единого архитектора — господа бога, то они обрели это подтверждение в одном математическом открытии. Герон (гл. I) доказал, что свет, двигаясь из точки P в точку Q и отражаясь в зеркале, распространяется по кратчайшему пути. Так как скорость света при этом постоянна, то кратчайший путь означает и кратчайшее время распространения света.

Один из величайших математиков XVIII в. Пьер Ферма (1601-1665), опираясь на весьма скудные экспериментальные данные, сформулировал принцип наименьшего времени: свет, идущий из одной точки в другую, распространяется по такому пути, на преодоление которого уходит наименьшее время. Очевидно, что таким сотворил свет господь бог, наделив его способностью не только неукоснительно следовать математическим законам, но и распространяться по пути, требующему минимальных затрат времени. Ферма окончательно уверовал в правильность своего принципа, когда ему удалось вывести из него закон преломления света, открытый ранее Снеллиусом и Декартом.

К началу XVIII в. математики располагали уже несколькими впечатляющими примерами того, как природа пытается «максимизировать» или «минимизировать» те или иные важные характеристики физических процессов. Христиан Гюйгенс, первоначально возражавший против принципа Ферма, доказал, что тот же самый принцип верен и для света, распространяющегося в среде с непрерывно изменяющимися свойствами. Даже первый закон Ньютона, утверждающий, что всякое находящееся в состоянии движения тело, если на него не действуют никакие силы, движется по прямой, стали рассматривать как еще одно свидетельство «принципа экономии», выполняющегося в природе.

Ученые XVIII в. были убеждены в том, что совершенная Вселенная не терпит напрасных затрат, — и потому каждое действие природы для достижения конечного результата должно быть наименьшим из возможных; на этой основе они принялись за поиск общего принципа. Первую формулировку такого принципа предложил Пьер Луи Моро де Мопертюи (1698-1759), математик, возглавлявший экспедицию в Лапландию, цель которой заключалась в измерении по меридиану длины дуги в один градус. Произведенные экспедицией измерения показали, что Земля сплюснута у полюсов, как предсказывали на основе теоретических соображений Ньютон и Гюйгенс. Открытие Мопертюи устранило возражения против теории Ньютона, выдвинутые Жаном Домиником Кассини и его сыном Жаком. Мопертюи был удостоен почетного титула «сплюснувший Землю». По меткому выражению Вольтера, Мопертюи сплющил Землю и обоих Кассини.

В 1740 г., занимаясь теорией света, Мопертюи провозгласил свой знаменитый принцип наименьшего действия, опубликовав статью под названием «О различных законах природы, казавшихся несовместимыми». Мопертюи исходил из принципа Ферма, но, поскольку не существовало единого мнения относительно того, в какой среде скорость света больше — в воде (как считали Декарт и Ньютон) или в воздухе (как полагал Ферма), Мопертюи отказался от наименьшего времени и заменил его новым понятием — действием. Под действием Мопертюи понимал интеграл (определяемый в математическом анализе) от произведения массы, скорости и пройденного расстояния. Согласно принципу наименьшего действия, все явления природы происходят так, что действие оказывается минимальным. Предложенное Мопертюи определение действия нуждается в некоторых уточнениях: Мопертюи не указал, по какому интервалу времени надлежит вычислять интеграл, и в каждом из найденных им приложений принципа в оптике и в некоторых задачах механики придавал действию разный смысл.

Хотя в обоснование своего принципа Мопертюи привел несколько физических примеров, он отстаивал принцип наименьшего действия и по теологическим мотивам. Законы движения материи должны обладать совершенством, достойным божьего замысла, и принцип наименьшего действия удовлетворял этому критерию, так как показывал, что природа действует наиболее экономным образом. Свой принцип Мопертюи провозгласил универсальным законом природы и первым научным доказательством существования и мудрости бога.

Величайший из математиков XVIII в. Леонард Эйлер, состоявший с Мопертюи в переписке (1740-1744) по поводу принципа наименьшего действия, согласился с ним в том, что бог, должно быть, построил Вселенную в соответствии с каким-то фундаментальным принципом и что существование такого принципа свидетельствует о направляющем персте божьем. Свое мнение Эйлер выразил так: «Поскольку наш мир устроен наисовершеннейшим образом и является творением всеведущего творца, во всем мире не происходит ничего такого, в чем не было бы воплощено какое-либо правило максимума или минимума».


Еще от автора Морис Клайн
Математика. Поиск истины.

Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.


Рекомендуем почитать
Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Озадачник: 133 вопроса на знание логики, математики и физики

Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.