Математика. Поиск истины. - [93]

Шрифт
Интервал

Несмотря на экспериментальное подтверждение того, что электроны при определенных условиях ведут себя как волны, далеко не все физики смирились с представлением об электронах, «размазанных» вокруг атомного ядра. Некоторые усматривали, в частности, противоречие в следующем: с одной стороны, в любой физически бесконечно малой области плотность заряда электрода должна быть бесконечно мала, а с другой — электрический заряд электрона является величиной вполне определенной. Все электрические заряды кратны заряду электрона. Руководствуясь этими соображениями и пытаясь избежать корпускулярно-волнового дуализма, Макс Борн (1882-1970) в 1926 г. предложил совершенно иную интерпретацию теории Шрёдингера: ввел ее вероятностную интерпретацию.

Теория вероятностей вошла в математику благодаря случаю, а именно в связи с задачами об азартных играх. Но в конце XIX в. Максвелл и Людвиг Больцман (1844-1906), воспользовавшись в своих исследованиях вероятностными соображениями, пришли к законам, описывающим движение газов, — к кинетической теории газов. Одна из знаменитых работ, опубликованных Эйнштейном в 1905 г., также была посвящена вероятностной задаче о так называемом броуновском движении. Вместо того чтобы рассматривать электрон как распределенный в некоем пространственном облаке, плотность которого меняется от точки к точке, Борн интерпретировал плотность как вероятность обнаружить электрон как частицу в той или иной точке пространства.

Обращаясь к ψ-функции, входящей в дифференциальное уравнение Шрёдингера, Борн предложил трактовать величину ψ как вероятность того, что частица находится в данном элементе пространства в данный момент времени. Следовательно, местонахождение электронов как частиц может быть указано лишь с большей или меньшей вероятностью. Например, если в некоторой области пространства |ψ|>2 = 0,8, то вероятность обнаружить частицу (электрон) в ней составляет 80 шансов из 100. Вероятностная интерпретация Борна общепринята и поныне.

Такой подход позволяет точно оценивать, с какой вероятностью электрон может находиться в любом данном объеме. При подобной интерпретации электрон локализован, а не «размазан», как в волновой механике Шрёдингера. Тем не менее остается вопрос, является ли вероятностная интерпретация наилучшей из возможных или же она просто порождена неполнотой наших представлений об электроне.

Использование вероятности может показаться отчаянной попыткой спасти положение, но статистическая механика убедительно доказала ценность вероятностного подхода. Любой газ представляет собой совокупность множества хаотически движущихся молекул, однако давление газа и другие его свойства удается вычислять на основе наиболее вероятных значений, и эти параметры имеют физический смысл.

Эйнштейн, Планк и Шрёдингер выступали против вероятностной интерпретации квантовой механики. Свои возражения Эйнштейн, в частности, изложил в 1955 г., аргументируя их ссылкой на приближенный характер и неполноту квантовой теории:

Я отвергаю основную идею современной статистической квантовой теории… Я не верю, что такая фундаментальная концепция может стать надлежащей основой для всей физики в целом… Я твердо убежден, что существенно статистический характер современной квантовой теории следует приписать исключительно тому, что эта теория оперирует с неполным описанием физических систем.

([7], т. 4, с. 295.)

Хотя вероятностная интерпретация квантовой теории получила широкое признание, в душе некоторых физиков робко теплилась надежда на то, что будущие исследования все же откроют возможность точного и достоверного определения положения электрона в пространстве. Но одна из принципиально новых особенностей квантовой теории как раз и состоит в неизбежности некоторого индетерминизма. Мы имеем в виду принцип неопределенности, открытый в 1927 г. Вернером Гейзенбергом (1901-1976). Грубо говоря, принцип неопределенности утверждает, что невозможно получить одновременно точную информацию и о положении, и о скорости (или импульсе) частицы. Точнее Гейзенберг показал, что произведение неопределенностей в оценке положения и импульса должно быть не менее ħ/2π (∆x∙∆p ≥ ħ = ħ/2π). Гейзенберг был убежден в правильности сформулированного им принципа и объяснял его тем, что частицы обладают и волновыми, и корпускулярными свойствами. И положение, и импульс частицы можно измерить сколь угодно точно, но только не одновременно, а порознь — либо координату, либо импульс. Тогда же Гейзенберг высказал предположение, что при столь тонких измерениях, как квантовомеханические, становится существенным сам объект, посредством которого производится измерение, — пробная частица.

Этот источник неопределенности начинает играть важную роль потому, что при измерении положения или импульса, например, электрона в качестве пробной частицы можно использовать только либо другие электроны, либо фотоны, но и те и другие оказывают сильное воздействие на исследуемую частицу. Следовательно, в мире атома мы не можем наблюдать явления, не создавая при этом возмущения. Так как положение и скорость микрочастиц невозможно измерить одновременно сколь угодно точно, мы лишены возможности точно предсказывать их поведение. И нам не остается ничего другого, как довольствоваться вероятностными предсказаниями. Наблюдения и эксперименты классической физики здесь ничем не помогут.


Еще от автора Морис Клайн
Математика. Утрата определенности.

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.


Рекомендуем почитать
Число, пришедшее с холода. Когда математика становится приключением

Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.


Путеводитель для влюбленных в математику

Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге.


Приключения математика

Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Игра случая. Математика и мифология совпадения

Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.


Как не ошибаться. Сила математического мышления

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.На русском языке публикуется впервые.