Математика. Поиск истины. - [25]

Шрифт
Интервал

Фалесу Милетскому выпала честь стать первым естествоиспытателем и философом «западной традиции». Сколь страстно он увлекался наблюдениями звездного неба, свидетельствует дошедшее до нас предание о том, как, неотрывно взирая на небо, Фалес провалился однажды в колодец. Особую известность ему принесло, как гласит легенда, предсказание солнечного затмения в 585 г. до н.э., хотя современные историки науки высказывают сомнения относительно этого.

Последователи Фалеса Милетского Анаксимандр (611-549 до н.э.) и Анаксимен (570-480 до н.э.) продолжали создавать и развивать теории о материальной первооснове Вселенной. Однако математика не играла существенной роли в их теоретических построениях. Не имея инструментов и не владея сколько-нибудь основательной методологией, Анаксимандр и Анаксимен могли лишь высказывать догадки о природе небесных тел и их удаленности от Земли. Анаксимандр даже предполагал, что звезды находятся ближе к нам, чем Солнце и Луна. Ни Анаксимандр, ни Анаксимен не упоминали о планетах как таковых; считалось, что эти «блуждающие светила» (слово «планета» по-гречески означает «бродяга») мало чем отличаются от звезд.

И все же Фалес Милетский и его ионийские коллеги далеко ушли вперед от мышления предшествовавших цивилизаций. Достаточно сказать, что они первыми дерзнули помыслить о Вселенной в целом, не прибегая к помощи богов, духов, дьяволов и прочих таинственных сил. Их материалистические и объективные объяснения и рациональный подход подорвали доверие к фантастическим объяснениям, апеллирующим к поэтическим и мифическим образцам и сверхъестественным силам. Блестящая интуиция позволяла этим мыслителям постигать природу Вселенной, а рациональные аргументы — обосновывать интуитивные прозрения.

Следующей крупной фигурой в философии и естествознании древних греков был Пифагор (VI в. до н.э.). Пифагор родился на острове Самос близ Милета. Он необычайно расширил свои познания за года почти тридцатилетних странствий; бежав с острова Самос от политической тирании, Пифагор в возрасте пятидесяти лет поселился, наконец, в Кротоне (Италия). Своих учеников и последователей Пифагор сплотил в некое братство, в котором научные изыскания сочетались с религиозно-мистическим ритуалом.

В области астрономии пифагорейское учение произвело буквально переворот, провозгласив шарообразность Земли, что по тем временам было дерзким новшеством. Сам Пифагор проповедовал свое учение устно. В письменном виде эта новая идея была изложена Парменидом (около 500 до н.э.). Насколько можно судить, провозглашая шарообразность Земли, оба мыслителя руководствовались мотивами как эстетическими, так и научными. Пифагор считал сферу наиболее совершенным из геометрических тел. Он учил, что Вселенная в целом также сферична, и, по-видимому, склонялся к мысли, что Земля и небо также должны иметь форму сферы. На мысль о сферичности Земли могли наводить (или по крайней мере служить ее косвенным подтверждением) рассказы мореплавателей и наблюдения, проводимые в периоды солнечных и лунных затмений. Постепенно представление о сферичности Земли завоевало всеобщее признание, хотя Аристотель в середине IV в. отмечал, что разногласия по этому поводу не были окончательно преодолены.

Пифагорейцы создали космологию, но космологию чисто умозрительную и не оказавшую особого влияния на последующее развитие астрономической мысли в Греции. Мистика чисел и априорный характер пифагорейской космологии могут показаться совершенно ненаучными, если не вспомнить о зачаточном состоянии наблюдательной астрономии того времени. Как мы увидим в дальнейшем, греческие астрономы остро ощущали неизбежную неточность своих наблюдений и обратились к математике, усматривая в ней гораздо более надежный путь к пониманию незыблемости и совершенства небесного мира.

Внимание астрономов привлекли необычайно сложные и нерегулярные движения, планет. Разумеется, постепенно, шаг за шагом кое-какие загадки были разрешены. Звездочеты поняли, что Венера и Меркурий в отличие от трех остальных известных тогда «блуждающих светил» не удаляются особенно далеко от Солнца и поэтому их можно наблюдать только утром и вечером; они научились отождествлять «утреннюю звезду» с «вечерней». Тогда же астрономы обратили внимание на загадку попятных движений планет и принялись размышлять над ней: «блуждающие светила» иногда странным образом останавливались в своем обычном движении по небосводу с запада на восток, как бы замирая на месте, затем в течение непродолжительного времени двигались вспять, снова останавливались, после чего возобновляла движение на восток. Причудливое и загадочное поведение планет приводило астрономов в недоумение, и греческий дух с его любовью к порядку и регулярности был почти устрашен небесными «бродягами». Но все же древних греков не покидала мысль: а не кроется ли за всем этим видимым хаосом некий порядок?

Но одно дело наблюдать и составлять таблицы движений планет, как это делали на протяжении столетий египтяне и вавилоняне. Эти народы были только наблюдателями. Совсем иное дело — это был огромный шаг вперед — заняться поиском единой теории движений небесных тел, которая позволила бы обнаружить порядок и закономерность за кажущимся беспорядком. Именно такую задачу поставил перед Академией Платон, провозгласив ныне знаменитый призыв «спасти явления». Решение поставленной Платоном задачи было предложено Евдоксом. Ученик Платона, Евдокс сам стал первоклассным мастером своего дела и одним из наиболее выдающихся греческих математиков, создав первую из известных в истории крупных астрономических теорий, которая ознаменовала значительный прогресс в рациональном познании природы.


Еще от автора Морис Клайн
Математика. Утрата определенности.

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.


Рекомендуем почитать
Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Озадачник: 133 вопроса на знание логики, математики и физики

Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.


Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.