Математика. Поиск истины. - [23]

Шрифт
Интервал

И сам Аристотель, и мир в целом не сомневались в том, что сформулированные Аристотелем принципы дедуктивного рассуждения, если их применить к любым посылкам, приводят к заключениям столь же надежным, как и посылки. Следовательно, если посылки были истинными, то заключения также будут истинными. Заметим попутно, что принципы дедуктивного рассуждения Аристотель абстрагировал из рассуждений, которыми уже пользовались математики. Дедуктивная логика — дитя математики.

Необходимо по достоинству оценить, сколь радикальным было неукоснительное следование принципам дедуктивного доказательства. Мы можем проверить сколько угодно чисел и убедиться, что каждое из них представимо в виде суммы двух простых чисел. Однако мы не можем утверждать, что наш результат есть математическая теорема, поскольку он не был получен путем дедуктивного доказательства. Приведем еще один аналогичный пример. Предположим, что какой-то ученый измерил суммы углов 100 различных треугольников, отличавшихся по расположению, размерам и форме. В пределах точности измерений все суммы оказались равными 180°. Ученый, разумеется, сделал бы вывод, что сумма углов любого треугольника равна 180°. Но такое заключение верно только в пределах точности измерений. Кроме того, оставался бы открытым вопрос о том, не дадут ли существенно иной результат измерения, производимые над треугольником какой-нибудь еще не испробованной формы. Индуктивное заключение нашего естествоиспытателя математически неприемлемо. В отличие от него математик начинает с фактов или аксиом, которые представляются надежными. Кто может усомниться в том, что если к равным величинам прибавить равные величины, то суммы окажутся равными? С помощью таких неоспоримых аксиом можно, рассуждая дедуктивно, доказать, что сумма углов любого треугольника равна 180°.

В описанном нами дедуктивном процессе для обоснования рассуждения используется логика. При этом, по существу, мы до сих пор применяем так называемую аристотелеву логику. Естественно спросить, почему заключения, полученные с помощью такой логики, должны иметь какое-то отношение к природе. Почему теоремы, доказанные человеческим разумом в тиши кабинетов, должны быть применимы к реальному миру, как, впрочем, и аксиомы, которые во многих случаях являются не более чем измышлениями того же человеческого разума? К вопросу о том, почему математика столь эффективна, мы вернемся в гл. XII.

Необходимо отметить еще одну важную характерную черту математики: использование специальных обозначений. Хотя страница, испещренная математическими символами, способна отпугнуть непосвященного, нельзя не признать, что без специальных обозначений математики погрязли бы в неразберихе слов. Все мы используем те или иные символы, когда прибегаем к множеству общепризнанных сокращений. Например, мы часто пишем N.Y., вместо New York (Нью-Йорк), и, хотя смысл таких аббревиатур нужно знать заранее, не подлежит сомнению, что краткость символики способствует постижению сути дела, в то время как словесное выражение перегружает разум.

Резюмируя, суть тех средств, которыми математики добывают факты о внешнем мире, можно сформулировать следующим образом: математика строит модели целых классов реальных явлений. Понятия, обычно идеализированные (независимо от того, почерпнуты они из наблюдений природы или являются плодами человеческого разума), аксиомы, которые также могут быть подсказаны физическими фактами или придуманы людьми, процессы идеализации, обобщения и абстракции, а также интуиция — все идет в ход при построении моделей. Доказательство цементирует элементы модели воедино. Наиболее известная модель — евклидова геометрия, но мы познакомимся со многими более изощренными и простыми моделями, рассказывающими нам гораздо больше о менее очевидных явлениях, чем это делает евклидова геометрия.

Наша цель состоит в том, чтобы показать, как прочно входит математика в современный мир не только как метод, позволяющий компенсировать несовершенство наших органов чувств, но и в гораздо большей степени как метод расширения того знания, которое человек способен обрести об окружающем мире. Как сказал Гамлет, «и в небе и в земле сокрыто больше, чем снится вашей мудрости, Горацио». Нам необходимо выйти за пределы знания, добытого чувственным опытом. Суть математики в отличие от чувственного восприятия состоит в том, что, опираясь на человеческий разум и способность человека к рассуждениям, она порождает знание о реальном мире, которое среднему человеку, даже если он воспитан на рациональной западной культуре, кажется полученным исключительно путем чувственного восприятия.

Важность математики для исследования реального мира подчеркивал Алфред Норт Уайтхед в своей книге «Наука и современный мир»:

Ничто не производит столь сильного впечатления, как то обстоятельство, что математика, чем выше она возносится в горные области все более абстрактной мысли, неизменно возвращается на землю, обретая все большее значение для анализа конкретного факта… Парадокс, окончательно установленный ныне, состоит в том, что именно предельные абстракции являются тем истинным оружием, которое правит нашим осмыслением конкретного факта.


Еще от автора Морис Клайн
Математика. Утрата определенности.

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.


Рекомендуем почитать
Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Озадачник: 133 вопроса на знание логики, математики и физики

Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.


Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.