Математика. Поиск истины. - [24]

Шрифт
Интервал

И как заметил однажды Давид Гильберт, один из самых выдающихся математиков XX в., физика в наше время слишком важна, чтобы оставлять ее физикам.

III

Астрономические миры древних греков

Сократ. Прекрасно сказано. Начнем же хотя бы со следующего вопроса…

Протарх. С какого?

Сократ. Скажем ли мы, Протарх, что совокупность вещей и это так называемое целое управляются неразумной и случайной силой как придется или же, напротив, что целым правит, как говорили наши предшественники, ум и некое изумительное, всюду вносящее лад разумение?

Протарх. Какое же может быть сравнение, любезнейший Сократ, между этими двумя утверждениями! То, что ты сейчас говоришь, кажется мне даже нечестивым. Напротив, сказать, что ум устраняет все, достойно зрелища мирового порядка…{3}

Платон

Известно, что астрономические теории греков оказались нежизнеспособными. Тем не менее они впервые показали, как математика интерпретирует мир чувственных восприятий. Революцию в астрономии, у истоков которой стояли Коперник и Кеплер, мы сможем лучше оценить, обратившись сначала к тому, что ей предшествовало.

Нас интересует, как математика помогает понять явления и процессы реального мира, недоступные нашему чувственному восприятию, а если и доступные, то в неадекватной, сильно искаженной форме. Древние греки весьма преуспели в приложениях математики, создав «математическую астрономию» и проложив дорогу для еще более успешных математических теорий.

Греки придавали столь большое значение астрономии прежде всего по той причине, что именно в небесах они наблюдали самые сложные движения, по крайней мере те из них, которые заметны невооруженному глазу. Телескопов в те времена не существовало, но даже если бы они и были, вряд ли эти инструменты позволили бы древним грекам сколько-нибудь основательно разобраться в сложных и запутанных движениях небесных светил. Звезды и другие небесные тела появлялись, исчезали, возникали вновь, оставаясь непостижимыми и загадочными.

Хотя древние греки не были творцами астрономии в ее современном виде, именно они заложили ее основы и создали предпосылки для последующего развития теории. Греки явили миру образцы первых истинно математических рассуждений и положили начало пониманию космических явлений.

Интерес к небесным телам неизменно проявляли даже народы, стоявшие на самых низких ступенях общественного развития. Свет и тепло, изливаемые на Землю Солнцем, чарующая игра красок на восходе и закате, зыбкие переливы лунного света, яркий блеск планет, возникающих и исчезающих в различные времена года, величественное зрелище Млечного Пути, солнечные и лунные затмения — все это создавало впечатление чуда, рождало восторг, нескончаемые толки, а подчас повергало людей в ужас. Но сведения о периодах обращения Солнца и Луны, моментах появления и исчезновения планет и звезд в догреческие времена были весьма скудными. Информация была явно недостаточной для сколько-нибудь уверенных оценок размеров небесных тел и расстояний до них и тем более для того, чтобы можно было разобраться в хитросплетениях относительного движения планет.

В Древнем Египте и Вавилоне производились наблюдения главным образом Луны и Солнца; их результаты использовались для составления календаря либо предсказания сроков проведения сельскохозяйственных работ. Но ни египтяне, ни вавилоняне, равно как ни одна другая культура до греков, даже не пытались составить общую исчерпывающую картину движения небесных тел. Для этого им недоставало ни соответствующих познаний в математике, ни инструментов, позволявших вести сколько-нибудь точные наблюдения. В сложном поведении небесных тел древние народы догреческого периода не могли усмотреть ни плана, ни порядка, ни определенной закономерности. Природа в их глазах была капризно изменчивой и загадочной.

Древние греки мыслили иначе. Движимые неутолимой жаждой знания и почтением к разуму, они незыблемо верили в то, что наблюдения за небесными светилами позволят обнаружить порядок, скрытый за видимой сложностью движений планет. Мы увидим в дальнейшем, что многие из греческих астрономов выдвигали и отстаивали идеи и представления, которые через много веков вошли в золотой фонд современной космологии. Наша космология — не плод усилий какого-нибудь одного гения. Присущий ей элемент гениальности — результат напряженного труда многих поколений гениев.

Исследование небес началось в Милете, самом южном из двенадцати городов Ионии на западной границе Малой Азии. В VI в. до н.э. в Милете сложилась благоприятная обстановка, позволившая человеческому разуму раскрепоститься и вступить на путь осмысления окружающего мира — путь, сулящий немалые радости, но и нередко таящий в себе опасность. Ремесла и торговля принесли городу процветание. Благосостояние обеспечило гражданам Милета комфорт и досуг, дало возможность совершать далекие путешествия. Бывая в Египте, Вавилоне и других странах древнего мира жители Милета впитывали богатство и достижения восточной мысли. В своем материальном благополучии милетцы видели свидетельство того, что они способны многое свершить, не полагаясь на помощь богов, и постепенно наиболее смелые умы пришли к дерзкой мысли о том, что вся Вселенная в целом познаваема, доступна человеческому разуму.


Еще от автора Морис Клайн
Математика. Утрата определенности.

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.


Рекомендуем почитать
Математические головоломки профессора Стюарта

Книга «Математические головоломки профессора Стюарта» известного математика и популяризатора математической науки Иэна Стюарта – сборник задач, головоломок и увлекательных историй. Повествование в книге основано на приключениях детектива-гения Хемлока Сомса и его верного друга, доктора Джона Ватсапа. Они ломают головы над решением задач с математической подоплекой.Автор уделяет внимание математическим датам, загадкам простых чисел, теоремам, статистике и множеству других интересных вопросов. Эта умная, веселая книга демонстрирует красоту математики.


Озадачник: 133 вопроса на знание логики, математики и физики

Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.


Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.