Математические головоломки и развлечения - [6]
Из многих сотен писем, полученных мной в связи со статьей о флексагонах, я считаю наиболее забавными два. В свое время они были опубликованы в Scientific American. Вот они.
Уважаемая редакция!
Меня прямо-таки потрясла статья «Флексагоны», опубликованная в декабрьском номере вашего журнала (за 1956 год).
Провозившись каких-нибудь шесть или семь часов, я с помощью сотрудников нашей лаборатории в конце концов сумел правильно склеить гексагексафлексагон. С тех пор вся наша лаборатория не перестает удивляться.
Сейчас мы встали перед проблемой. Как-то утром один из наших сотрудников, занимаясь от нечего делать складыванием гексагексафлексагона, не заметил, как кончик его галстука попал внутрь этой игрушки. При каждом последующем перегибании галстук несчастного все больше и больше втягивался внутрь флексагона. После шестого перегибания исчез сам сотрудник.
Разумеется, мы тут оке начали лихорадочно перегибать флексагон, но так и не обнаружили никаких следов нашего товарища, зато мы нашли шестнадцатую поверхность гексагексафлексагона.
Возникает вопрос: должна ли вдова исчезнувшего сотрудника получить компенсацию за все время его отсутствия или же мы можем с полным основанием сразу считать его умершим? Ждем вашего совета.
НЕЙЛ АПТЕГРОУВ
Лаборатории Аллена В. Дюмона
Клифтон, штат Нью-Джерси
Сэр!
Письмо об исчезновении внутри гексагексафлексагона сотрудника Лабораторий Аллена В. Дюмона, напечатанное в мартовском выпуске вашего журнала, помогло нам решить одну загадку.
Однажды, занимаясь на досуге складыванием гексагексафлексагона самой последней модели, мы заметили, что из него торчит кусочек какой-то пестрой материи. При последующих перегибаниях флексагона из него показался незнакомец, жующий резинку.
К сожалению, он был очень слаб и из-за частичной потери памяти не мог объяснить нам, каким образом оказался внутри флексагона. Наша национальная диета из овсянки, хэггиса[6] и виски поправила его здоровье. Он стал всеобщим любимцем и откликается на имя Экклз.
Нас интересует, нужно ли нам вернуть его и если да, то каким способом? К сожалению, Экклза бросает в дрожь при одном лишь виде гексагексафлексагона, и он решительно отказывается «складываться».
РОБЕРТ М. ХИЛЛ
Королевский колледж науки и техники
Глазго, Шотландия
Глава 2. ФОКУСЫ С МАТРИЦАМИ
Магические квадраты занимают воображение математиков уже более двух тысячелетий. В традиционном магическом квадрате суммы чисел в каждом столбце, каждом ряду и по каждой диагонали одинаковы. Совершенно иной тип магического квадрата изображен на рис. 8.
Рис. 8
На первый взгляд может показаться, что он составлен без всякой системы и числа в нем расположены случайным образом.
Тем не менее этот квадрат обладает магическим свойством, вызывающим удивление не только у человека, далекого от науки, но и у профессионала-математика.
Это свойство лучше всего демонстрировать с помощью пяти монет и 20 бумажных фишек. Попросите кого-нибудь выбрать любое из чисел, вписанных в клетки квадрата. Положите на это число монету и закройте фишками все остальные числа, стоящие в одной строке и одном ряду с выбранным.
Попросите теперь того же человека выбрать любое из чисел, вписанных в незакрытые еще клетки, положите на выбранное число другую монету, а числа, стоящие в той же строке и в том же столбце, что и выбранное во второй раз число, снова закройте фишками. Повторив эту процедуру еще два раза, вы обнаружите, что незакрытой осталась лишь одна клетка. Положите на эту клетку пятую монету.
Если теперь вычислить сумму чисел, накрытых монетами (напомним, что на первый взгляд числа кажутся выбранными наудачу), то она будет равна 57. Это не случайно: сколько бы вы ни повторяли эксперимент, сумма всегда будет одной и той же.
Если вы любите решать математические головоломки, то можете остановиться на этом месте, чтобы попытаться самостоятельно раскрыть секрет удивительного квадрата.
Этот фокус, как и многие другие, после объяснения оказывается до смешного простым. Квадрат представляет собой не что иное, как самую обычную таблицу сложения, правда, составленную весьма замысловатым образом. Строится такая таблица с помощью двух наборов чисел: 12, 1, 4, 18, 0 и 7, 0, 4, 9, 2. Сумма всех этих чисел равна 57. Написав числа первого набора над верхней строкой квадрата, а числа второго набора слева от самого левого столбца, вы сразу же поймете, как получаются числа в клетках квадрата (рис. 9).
Рис. 9
Так, число в левом верхнем углу (стоящее на пересечении первой строки и первого столбца) равно сумме чисел 12 и 7. Точно так же получаются и все остальные числа: для того чтобы узнать, какое число следует вписать в ту или иную клетку, нужно просто вычислить сумму чисел, стоящих у той строки и того столбца, на пересечении которых находится интересующая нас клетка.
Совершенно аналогичным образом можно построить магический квадрат любого размера с любыми числами. Сколько клеток в квадрате и какие числа выбраны для его построения, никакой роли не играет. Числа в исходных наборах могут быть положительными или отрицательными, целыми или дробными, рациональными или иррациональными. Получившаяся таблица всегда будет обладать волшебным свойством: проделав описанную выше процедуру с монетами и фишками, вы всегда получите сумму чисел, входящих в оба исходных набора. В частности, в рассмотренном нами случае можно было взять любые восемь чисел, дающих в сумме 57.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.