Математические головоломки и развлечения - [134]

Шрифт
Интервал

— Мне нравится непринужденность жителей Гринвич-Вилледж, заметил Аполлинакс, — они все так похожи друг на друга.

— Иногда, — подал голос кто-то из гостей, — непринужденность трудно отличить от невроза.

— Это напоминает мне, — сказал я, — математическую загадку, которую я недавно слышал. В чем разница между психопатом и неврастеником?

Никто не ответил на мой вопрос.

— Психопат думает, — продолжал я, — что дважды два — пять.

Неврастеник знает, что дважды два равно четырем, и это его нервирует.

Раздался вежливый смех, но Аполлинакс помрачнел.

— У неврастеника есть все основания нервничать. Разве Александр Поуп не писал: «О боги! Почему дважды два непременно должно быть равно четырем?» И действительно, почему? Кто может сказать, почему масло масляное? Кто смеет утверждать, что даже простая арифметика свободна от противоречий?

Аполлинакс вынул из кармана записную книжку и написал на чистой страничке следующий бесконечный ряд:

4–4 + 4–4 + 4–4 + 4…

— Чему, как вы думаете, — спросил он, — равна сумма этого ряда? Если его члены сгруппировать так:

(4–4) + (4–4) + (4–4) +…,

то сумма, очевидно, равна нулю. Но если сгруппировать их иначе, например так:

4 — (4–4) — (4–4) — (4–4) — …,

то сумма, очевидно, будет равна четырем. Можно сгруппировать члены ряда еще одним способом:

4 — (4–4) + (4–4) + (4–4) +…).

Тогда сумма ряда будет равна четырем минус сумма того же ряда. Иначе говоря, удвоенная сумма равна четырем, следовательно, сама сумма должна быть равна половине четверки, или двум.

Я хотел было сделать замечание, но тут среди гостей протолкалась Нэнси и сказала:

— Эти плитки не дают мне покоя. Что случилось с пятым кубиком?

Аполлинакс смеялся до слез.

— Я же дал вам намек, милая. Скорее всего кубик ускользнул в высшее измерение.

— Пытаетесь меня одурачить?

— Хотел бы, — вздохнул Аполлинакс. — Четвертое измерение, как вам известно, простирается вдоль четвертой координаты, перпендикулярной трем координатам трехмерного пространства. Рассмотрим теперь куб. У него четыре главные диагонали, каждая из них идет от одной вершины куба через его центр к противоположной вершине. Вследствие симметрии куба каждая диагональ, очевидно, ортогональна к трем остальным диагоналям. Почему бы кубу, если ему это нравится, не ускользнуть по четвертой координате?

— Но мой преподаватель физики, — сказала Нэнси, нахмурив брови, — учил меня, что четвертым измерением служит время.

— Чепуха! — фыркнул Аполлинакс. — Общая теория относительности давно мертва. Разве ваш профессор не слышал о роковом изъяне эйнштейновской теории, недавно обнаруженном Хилбертом Донглем?

— Сомневаюсь, чтобы это была правда, — ответила Нэнси.

— Идею Донгля легко объяснить. Если вы быстро закрутите шар из мягкой резины, что произойдет с его экватором? Он расширится. В рамках теории относительности вы можете объяснить это расширение двумя способами. Во-первых, вы можете предположить, что вся Вселенная представляет собой некую фиксированную систему отсчета — так называемую инерциальную систему отсчета. Тогда вы говорите, что сфера вращается, а инерция заставляет экватор расширяться. Во-вторых, вы можете принять за фиксированную систему отсчета сферу, полагая, что вращается остальная Вселенная. В этом случае вы говорите, что массы движущихся звезд создают тензорное гравитационное поле, которое оказывает сильнейшее воздействие на экватор неподвижного шара. Конечно…

— Я бы предположил несколько иную формулировку, — вмешался профессор Чита. — Я бы сказал, что существует относительное движение сферы и звезд и это относительное движение обусловливает определенные изменения в временной структуре Вселенной. Образно выражаясь, можно сказать, что давление этой пространственно-временной матрицы и приводит к растяжению экватора. Растяжение можно считать либо гравитационным, либо инерциальным эффектом. И в том и в другом случае гравитационные уравнения абсолютно одинаковы.

— Очень хорошо, — ответил Аполлинакс. — То, о чем вы говорите, Эйнштейн называл принципом эквивалентности — эквивалентности гравитации и инерции. Как любит говорить Ганс Рейхенбах, подлинного различия между ними нет. Но позвольте вас спросить: разве теория относительности не запрещает физическим телам двигаться с отрицательными скоростями, превышающими скорость света? И все же, приняв резиновый шар за фиксированную систему отсчета и лишь слегка закрутив его, мы сможем придать Луне относительную скорость, намного превосходящую скорость света.

Профессор Чита медленно перевел дыхание.

— Дело в том, — продолжал Аполлинакс, что мы просто не в состоянии удерживать шар неподвижно, когда Вселенная вращается вокруг него. Это означает, что вращение шара мы должны считать не относительным, а абсолютным. Астрономы сталкиваются с аналогичной трудностью при попытке объяснить так называемый поперечный эффект Доплера. Если Земля вращается, то относительная поперечная скорость между обсерваторией и лучом света, идущим от далекой звезды, мала, поэтому мало и доплерово смещение. Если же считать, что вращается Вселенная, то поперечная скорость далекой звезды относительно обсерватории очень велика, и доплерово смещение должно быть большим. Поскольку доплерово смещение мало, мы вынуждены принять допущение о том, что вращается именно Земля. Тем самым наносится решающий удар по теории относительности.


Еще от автора Мартин Гарднер
Есть идея!

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.


Математические чудеса и тайны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


Обман и чудачества под видом науки

Состояние лженауки на середину двадцатого века с точки зрения науки США  .


А ну-ка, догадайся!

Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.


Рекомендуем почитать
Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Озадачник: 133 вопроса на знание логики, математики и физики

Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Принцесса или тигр?

Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.