Математические чудеса и тайны - [17]

Шрифт
Интервал

Если теперь потянуть за концы, узел сразу развяжется.


Одежда

Три занимательных фокуса топологического характера для небольшой аудитории можно показать, пользуясь костюмными жилетами. С точки зрения топологии жилет можно рассматривать как двустороннюю поверхность с тремя не сцепленными краями, каждый из которых является обыкновенной замкнутой кривой. Застегнутый жилет является двусторонней поверхностью с четырьмя краями.


Загадочная петля

Зрителя, носящего жилет, просят снять пиджак.

Ему надевают на руку петлю, а затем просят заложить большой палец в нижний карман жилета, как показано на рис. 36.



Теперь можно предложить присутствующим снять петлю с руки, не трогая большого пальца зрителя с места. Разгадка такова: петлю нужно протащить в жилетное отверстие для рукава, перебросить через голову зрителя, вытащить через второе отверстие для рукава и перенести под вторую руку. В результате этих действий петля окажется под жилетом, окружая собой грудь.

Опускайте ее, пока она не покажется из-под жилета, а затем дайте упасть на пол.



Вывертывание жилета наизнанку

Зритель, носящий жилет, снимает пиджак и, соединив пальцы, вытягивает руки вперед. Можно ли вывернуть жилет наизнанку, не разнимая зрителю пальцев? Оказывается, можно. Для этого нужно расстегнуть жилет, поднять его над головой так, чтобы он повис на руках, вывернуть там наизнанку, просовывая через одно из отверстий для рукавов, и, наконец, надеть снова. Поразительно, что то же самое можно проделать и не расстегивая жилета, причем единственное затруднение будет в том, что застегнутый жилет слишком узок, чтобы его можно было стащить через голову. Однако этот фокус легко демонстрировать, заменив жилет свитером. Манипуляции со свитером должны быть точно такими же, как и с жилетом. Нетрудно демонстрировать этот фокус и на самом себе, для чего нужно соединить шнуром кисти рук, оставляя между ними сантиметров 50, чтобы обеспечить свободу движений. Вы сами можете убедиться, что стянуть свитер через голову, вывернуть его наизнанку через один из рукавов и снова надеть на себя совсем нетрудно.

Можно вывернуть жилет наизнанку со связанными руками, даже не снимая предварительно пиджака. Для этого нужно поднять пиджак кверху, пронести его над головой и оставить повисшим на руках. Затем поднять над головой жилет, через одно из его рукавных отверстий пропустить пиджак и вывернуть жилет наизнанку так, как это описывалось выше.


Снятие жилета

Оказывается, что жилет можно снять, не снимая пиджака. Проще всего это сделать так. Расстегнув сначала жилет, заложите левую полу пиджака зрителя на левое рукавное отверстие жилета с внешней стороны. Переведите затем это отверстие назад через левое плечо зрителя и далее вниз по его левой руке.

Теперь отверстие охватывает пиджак за левым плечом. Продолжайте передвигать отверстие по пиджаку дальше вокруг корпуса, переведите его через правое плечо и руку и, наконец, пропустите сквозь него правую половину пиджака. Таким образом, рукавное отверстие совершило почти полный оборот вокруг корпуса.

Жилет теперь висит под пиджаком на правом плече. Спустите его наполовину вниз сквозь правый рукав пиджака. Подверните обшлаг, захватите из-под него жилет и вытяните сквозь рукав наружу.

Резиновые кольца

Вот два фокуса топологического характера с резиновыми кольцами.


Скачущее кольцо

Повесьте резиновое кольцо на свой указательный палец (рис. 37).

Заведите вторую половину кольца за средний палец (рис. 38) и зацепите снова за указательный, как показано на рис. 39.

Убедитесь в том, что кольцо охватывает пальцы точно так, как на рисунке. Попросите кого-нибудь взяться за кончик указательного пальца. Теперь согните средний палец, как на рис. 40. Если кольцо было надето правильно, то часть его соскользнет с конца среднего пальца.




Вследствие этого и все кольцо свободно соскочит с указательного пальца и повиснет на среднем, как это показано на рис. 40.


Перекрученное кольцо

Для показа другого фокуса нужно широкое резиновое кольцо, которое вначале держится, как показано на рис. 41.



Затем оно дважды перекручивается; делается это при помощи большого и указательного пальцев, которые нужно двигать в направлениях, показанных на рис. 42 стрелками.



Попросите кого-нибудь снять с вашего пальца кольцо, захватив его точно таким же образом, как держали вы, т. е. так, чтобы правые большой и указательный пальцы удерживали кольцо за верхний конец, тогда как левые большой и указательный пальцы за нижний. Теперь предложите распрямить кольцо (т. е. избавиться от перекручиваний), меняя положение рук, но, конечно, не разжимая при этом пальцев.

Сколько бы зритель ни двигал руками, в конце концов, он должен будет признать, что не может этого сделать. Тогда вы аккуратно снимаете кольцо с его рук, взяв его точно так же, как держали первоначально. Затем очень медленно опускаете правую руку и поднимаете левую, как это показано на рис. 43. Когда вы это делаете, перекручивания чудесным образом исчезают на глазах.



Секрет этого фокуса можно объяснить топологически. Перекрученное кольцо вместе с вашими руками и телом образуют некоторую топологическую структуру. Когда кольцо берет зритель, получается «левый вариант» этой структуры, топологически существенно отличный от вашего. В этом случае от перекручивания избавиться невозможно.


Еще от автора Мартин Гарднер
Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.


Есть идея!

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.


Остров пяти красок

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


А ну-ка, догадайся!

Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.