Магия чисел. Математическая мысль от Пифагора до наших дней - [12]

Шрифт
Интервал

Был ли будда, со своим настойчивым призывом к правильному мышлению как первому шагу на пути из восьми ступеней к благости, удовлетворен попыткой греков четко определить, что можно считать одной из разновидностей правильного мышления? Но нет явных свидетельств, что Будда вообще слышал о математике, которую открывал миру Пифагор с присущим ему рвением первооткрывателя, изучающего вновь найденный континент. Пифагор же, со своей стороны, должен был узнать много больше, чем знал до этого, о переселении душ и таинствах успешных реинкарнаций.

Где бы он ни получил эти расслабляющие восточные верования, которые сегодня владеют миллионами неприкасаемых в своей добровольной деградации, Пифагор держал их так крепко, словно какой-нибудь индийский факир. Они и его страстное увлечение числами вскормили фантастическое явление – метафизику, которая мигрировала из мировоззрения в мировоззрение, пока, очищенная наконец-то от всех разумных пятен, она не погрузилась в собственную нирвану в свободной от примесей магии чисел физики ХХ века.

Если бы Пифагор и Будда встретились, вполне вероятно, что мир обошелся бы без трех веков экспериментальной науки, что последовали за Галилеем и Ньютоном. Вполне реально, что это ускорение в понимании законов развития физической материи могло бы начаться сразу же после их встречи, и Платон, а не Ньютон объявил бы о законе всемирного тяготения. А еще на половину поколения позже Эйнштейн вселился бы в тело Аристотеля.

К сожалению для этой консумации познания и здравого смысла, сам Пифагор погряз в научных опытах и потерял свое могучее эго в бесконечном эксперименте. Наука, математика и философия нерешительно повернулись на Запад, а не на Восток.

Преданный сторонник современной магии чисел будет вынужден признать, что поворот на Запад задержал промышленную революцию до конца XVIII века. Поворот лицом к Востоку вверг бы мир в нее еще в III веке до н. э., и Вторая мировая война могла бы случиться на первом году нашей эры. А в каком состоянии был бы наш мир сегодня, не сможет ответить даже самый квалифицированный нумеролог.

Глава 5

Различия во мнениях

Когда благодарные сограждане поинтересовались у Фалеса, какую награду хотел бы он получить за свои деяния для них и города, в ответ прозвучало: «Веры в мои открытия». Если судить по дошедшим до нас письменным свидетельствам, Фалес был первым, кто предположил, что созданные разумом нематериальные, неосязаемые ценности способны пережить материальные.

Это предположение оказалось проницательным. Богатый царь Крез был помешан на золоте. Его сравнительно небогатый друг, хитроумный Фалес, увлекался идеями. Он нацелился на бессмертие. Если Крез, общеизвестный как самый богатый человек Античности, и внес в развитие цивилизации что-нибудь, кроме поговорки «богат как Крез», это уже давным-давно забыто. И хотя Крез, просто как имя, возможно, и более известен, чем Фалес, но именно последний остается вечно живым. Уже одно из его достижений обеспечило ему бессмертие, которого он желал. Дедуктивный метод исследования, используемый в геометрии, традиционно приписывается Фалесу. Он только мельком затронул то, что Пифагор и его последователи развили в заслуживающие доверия основы математики, как они воспринимаются в наше время, и все же он был первым, о ком упоминает история, кто предвидел ее возможности.

Как станет известно позднее, есть основания считать, что древние египтяне тоже применяли метод дедуктивных умозаключений в геометрии. Но, кроме неоднозначного утверждения одного человека, никаких свидетельств на этот счет обнаружено не было. Согласно греческим преданиям и истории, первым был Фалес в VI веке до н. э.

Связь дедуктивного метода со всей математикой и наукой столь важна своими последствиями, что следует немного остановиться на этом методе, прежде чем перейти к личности самого Фалеса. Самая суть вопроса состоит в том, что без дедуктивных умозаключений математики в том виде, в котором она понимается профессиональными математиками, просто не существует. Данное категоричное заявление обычно приводит в ярость тех романтиков, кто находит упоение в выискивании поразительных образчиков математического гения во всем, от учетных записей мумифицированного египетского управляющего до зигзагообразных молний на горшках индейцев племени зуни. Никто не станет отрицать, что подобные вещи могли предшествовать появлению арифметики и геометрии или что они могли бы натолкнуть людей, способных мыслить размеренно, позитивно и абстрактно, на проявление математических начал. Но путать их с математиками – все равно что смешать все мышление с розовым туманом, где мифология дикарей не может быть отличима от всемирного тяготения Ньютона и пространства-времени Эйнштейна. Нежелание провести границы между тем, что математики называют математикой и полуэмпиризмом, что предшествует этой математике, но иногда по ошибке принимается за математику, вводит в заблуждение многочисленных философов от античных греков до Канта в XVIII веке. К этому еще вернемся в соответствующем разделе.

«Дедуктивные рассуждения» можно заменить в данной работе более коротким, но не менее емким термином – «доказательство». Достаточно двух деталей. Доказательство в математике происходит от четко выраженных допущений, ясно обоснованных. Допущения могут в разное время именоваться постулатами и чуть реже аксиомами. В античные времена преобладала уверенность, что постулаты математики являются очевидными истинами, присущими «природе вещей», не требующими доказательств и являющимися непреложными для любой последовательной (не противоречащей самой себе) оценки «чисел» и «пространства». Эта вера в жизненную необходимость постулатов, скажем в элементарной геометрии и арифметике, просуществовала до XIX века. Затем мало-помалу приходило осознание, что постулаты, ставшие основой математики, вовсе не обязательные истины в описанном смысле, но некое договорное условие, на которое согласны все математики. В частности, постулаты геометрии явно человеческого происхождения. Они не были навязаны человечеству «природой вещей» или каким-либо еще экстрачеловеческим посредничеством. Этот очень неадекватный итог диспута длиной в два тысячелетия вполне достаточен на данный момент, позднее он будет досконально рассмотрен.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.