Краткая история времени. От Большого взрыва до черных дыр - [9]
С 1887-го по 1905 год было предпринято несколько попыток объяснить результат эксперимента Майкельсона и Морли. Наиболее известной из них была попытка голландского физика Хендрика Лоренца, который предположил, что при движении сквозь эфир объекты сокращаются в направлении движения, а ход часов замедляется. Но в своей знаменитой статье, опубликованной в 1905 году, никому тогда не известный клерк швейцарского патентного бюро Альберт Эйнштейн заметил, что необходимость в самой идее эфира отпадает, если отказаться от представления об абсолютном времени. Выдающийся французский математик Анри Пуанкаре высказал похожую идею спустя несколько недель после Эйнштейна. Аргументы Эйнштейна оказались более физичными, чем соображения Пуанкаре, который рассматривал проблему с чисто математической точки зрения. Слава за открытие новой теории досталась Эйнштейну, но не забыт и важный вклад Пуанкаре в ее создание.
Фундаментальным постулатом эйнштейновской теории относительности было утверждение, что законы науки должны быть одинаковыми для любого свободно движущегося наблюдателя независимо от его скорости. Это было справедливо и для законов движения Ньютона, но Эйнштейн распространил эту идею на теорию Максвелла и скорость света: все наблюдатели должны измерять одно и то же значение скорости света независимо от того, как быстро они движутся. Эта простая идея имела ряд замечательных следствий. Пожалуй, наиболее известными из них оказались а) эквивалентность массы и энергии, заключенная в знаменитом уравнении E = mc>2 (где E – это энергия, m – масса, а c – скорость света), и б) закон, согласно которому ничто не может двигаться быстрее света. Эквивалентность массы и энергии означает, что связанная с движением объекта энергия увеличивает его массу. Другими словами, чем быстрее движется объект, тем труднее дается дальнейшее увеличение его скорости. В реальности этот эффект существен только для объектов, движущихся со скоростью, близкой к скорости света. Например, масса объекта, движущегося со скоростью в 10 % скорости света, больше обычной всего лишь на 0,5 %, в то время как при скорости в 90 % скорости света масса объекта оказывается более чем в два раза больше его нормальной массы. По мере приближения скорости объекта к скорости света масса объекта возрастает все быстрее, и поэтому для дополнительного ускорения требуется все больше энергии. Согласно теории относительности объект никогда не сможет достичь скорости света, потому что с приближением к ней его масса будет стремиться к бесконечности, и следовательно, согласно принципу эквивалентности массы и энергии для разгона до скорости света потребуется бесконечная энергия. Именно по этой причине любой рядовой объект обречен вечно двигаться медленнее, чем свет. Только свет или другие волны, не имеющие собственной массы, могут двигаться столь стремительно.
Не менее замечателен вклад теории относительности в характер наших представлений о пространстве и времени: она произвела настоящую революцию. По Ньютону, если послать импульс света из одного места в другое, то время, за которое этот импульс достигнет цели, будет одним и тем же с точки зрения разных наблюдателей, потому что оно абсолютно. А вот пройденное светом расстояние, согласно измерениям разных наблюдателей, будет различаться, потому что пространство не является абсолютным. Поскольку скорость света равна пройденному светом расстоянию, деленному на затраченное время, то значения скорости света, измеренные разными наблюдателями, будут различаться. С другой стороны, в теории относительности все наблюдатели должны получить одинаковое значение скорости света. При этом пройденное светом расстояние будет разным для разных наблюдателей, и следовательно, измерения разных наблюдателей должны дать разные значения затраченного светом времени. Затраченное светом время равно пройденному светом расстоянию (которое оказывается разным для разных наблюдателей), деленному на скорость света (которая одинакова для всех наблюдателей). Другими словами, теория относительности положила конец идее абсолютного времени! Она постулировала, что мера времени у каждого наблюдателя, задаваемая его часами, своя, и даже если разные наблюдатели используют совершенно одинаковые часы, они необязательно получат одинаковые значения для измеряемого интервала времени.
Каждый наблюдатель может использовать радар для определения места и времени того или иного события. Для этого наблюдатель отправляет радиоимпульс или импульс света и измеряет время приема частично отраженного импульса. Временем события считается середина интервала между отправлением исходного импульса и приемом отраженного импульса; расстояние до события определяется как половина времени, затраченного на ожидание приема отраженного импульса, умноженная на скорость света. (Под событием подразумевается нечто, произошедшее в некой точке пространства в некоторый момент времени.) Суть этого описания иллюстрирует рисунок 2.1, это пример пространственно-временной диаграммы. Прибегнув к помощи радара, движущиеся относительно друг друга наблюдатели приписывают одному и тому же событию разные время и положения. Измерения ни одного из наблюдателей нельзя считать более правильными, чем измерения какого бы то ни было другого наблюдателя, но все измерения взаимосвязаны. Любой наблюдатель может точно вычислить время и положение, которые припишет данному событию любой другой наблюдатель, при условии, что ему известна относительная скорость этого наблюдателя.
Стивен Хокинг, величайший ученый современности, изменил наш мир. Его уход – огромная потеря для человечества. В своей финальной книге, над которой Стивен Хокинг работал практически до самого конца, великий физик делится с нами своим отношением к жизни, цивилизации, времени, Богу, к глобальным вещам, волнующим каждого из нас.
Книга представляет собой сборник эссе выдающегося физика современности Стивена Хокинга, написанных им в период с 1976 по 1992 год. Это и автобиографические очерки, и размышления автора о философии науки, о происхождении Вселенной и ее дальнейшей судьбе.
Эта книга объединила семь лекций всемирно знаменитого ученого, посвященных происхождению Вселенной и представлениям о ней - от Большого Взрыва до черных дыр и теории струн. А главное, тому, как создать на основе частных физических теорий великую объединенную теорию всего.
По Вселенной на астероиде – не может быть! Может! – не сомневаются знаменитый астрофизик Стивен Хокинг (интервью с ним читайте здесь), его дочь Люси и бывший аспирант, а ныне популяризатор науки Кристоф Гальфар, которые в сентябре 2007 года представили свою первую книгу для детей о приключениях Джорджа и его друзей во Вселенной.В этой живой и весёлой книге они рассказали о фантастически интересных предметах – черных дырах, квазарах, астероидах, галактиках и параллельных вселенных – детям. Авторы особо подчеркивают, что хотели «представить современный взгляд на космологию от Большого взрыва до настоящего времени без какой бы то ни было магии».
Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.
И вот – долгожданная вторая часть о приключениях Джорджа в космосе – «Джордж и сокровища Вселенной». Все те, кто прочитал научно-приключенческую повесть Стивена и Люси Хокинг «Джордж и тайны Вселенной», с нетерпением ждали продолжения: что-то станется с бесстрашными и любознательными героями дальше? Какие загадки предстоит им решить? Что нового узнать? Куда подевался тщеславный злодей доктор Линн?Во второй книге трилогии, к неразлучным друзьям Джорджу и Анни присоединяется еще один мальчик – компьютерный гений Эммет.
Это история об Уильяме Перкине, который случайно изобрел пурпурный цвет. И навсегда изменил мир вокруг себя. До 1856 года красители были исключительно натуральными – их получали из насекомых, моллюсков, корней и листьев, а искусственное окрашивание было кропотливым и дорогим. Но в 1856 году все изменилось. Английский химик, работая над лекарством от малярии в своей домашней лаборатории, случайно открыл способ массового производства красителей на фабриках. Этот эксперимент – или даже ошибка – произвел революцию в моде, химии и промышленности. Эта книга – удивительный рассказ о том, как иногда даже самая маленькая вещь может менять и иметь такое продолжительное и важное воздействие. В формате PDF A4 сохранён издательский дизайн.
100-летие спустя после окончания Первой мировой войны и начала становления Версальской системы предыстория и история этих событий требуют дальнейшего исследования. Тема книги актуальна и в связи с территориальными изменениями в Центрально-Восточной Европе (ЦВЕ) в конце ХХ века. Многие сегодняшние проблемы берут начало в геополитической трансформации региона в ходе Первой мировой войны и после ее окончания. Концептуальной новизной работы является попытка проследить возвращение имперской составляющей во внешнюю политику России.
Собирая эту книгу из огромного количества материалов, я ставила перед собой нетривиальную задачу: на жизненном примере взаимоотношений ученого каббалиста Михаэля Лайтмана и его великого учителя Баруха Ашлага показать один из возможных путей в каббалу. Удалось ли мне решить эту задачу, пусть решает читатель От составителя книги Ларисы АртемьевойКнига представлена в сокращенном виде. Это связано с тем,что значительная часть материалов данной книги в расширенном и дополненном виде уже скоро (осень 2006 года) будет представлена в новой книги Михаила Лайтмана, в его редакции и с его комментариями.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
У вас в руках сборник рейтовских лекций Стивена Хокинга о черных дырах, прочитанных на BBC Radio 4. Трудно вообразить, кто мог бы рассказать об одних из самых загадочных космических объектов интереснее и проще, чем человек, сделавший космологию популярной наукой и отдавший многие годы изучению связанных с черными дырами эффектов. Те вопросы, которые остались без ответа, растолковал Дэвид Шукман, научный редактор BBC. Рейтовские лекции, или лекции имени лорда Джона Рейта, первого генерального директора BBC, просветителя и популяризатора, – цикл научно-популярных записей.
Фестиваль науки Starmus впервые прошел в 2011 году, и с тех пор стало традицией участие в нем ведущих ученых, знаменитостей в области космонавтики и музыки, которых объединяет страсть к популяризации знания о Земле и космосе. Учредитель фестиваля и астрофизик Гарик Исраелян создал экспертный совет, в который вошли такие замечательные личности, как астрофизик и рок-музыкант Брайан Мэй, эволюционный биолог Ричард Докинз, первооткрыватель микроволнового излучения Роберт Вильсон, теоретический физик Стивен Хокинг, космонавт Алексей Леонов, химик и лауреат Нобелевской премии Харольд Крото и другие. В этой книге собраны лекции ученых, которые многие годы работали над тем, чтобы воссоздать прошлое вселенной и представить ее структуру.
Под этой обложкой собраны работы Стивена Хокинга, которые дают наиболее полное представление о его жизни, работе, взглядах на науку и Вселенную: «Краткая история времени». «Моя краткая история» и отдельные лекции из сборника «Черные дыры и молодые вселенные».
Чтобы дать верные ответы на фундаментальные вопросы о Вселенной, понадобились века и смелость нескольких ученых. Николай Коперник в трактате «О вращении небесных сфер», Галилео Галилей в «Диалоге о двух главнейших системах мира», Иоганн Кеплер в «Гармонии мира», Исаак Ньютон в «Математических началах натуральной философии» и Альберт Эйнштейн в своих многочисленных статьях о принципе относительности открыли современникам глаза на то, как устроен небесный свод и что происходит за пределами видимости телескопа.