Краткая история времени. От Большого взрыва до черных дыр - [11]
Рис. 2.2
Как мы уже знаем, из уравнений Максвелла следует, что скорость света должна быть всегда одной и той же независимо от скорости источника света, и этот вывод был подтвержден точными измерениями. Отсюда следует, что если импульс света испущен в определенное время и в определенной точке пространства, то со временем он должен распространиться в виде световой сферы, размер и положение которой не зависят от скорости источника. Через одну миллионную долю секунды свет расширится до сферы радиусом 300 метров, через две миллионных доли секунды радиус сферы составит 600 метров, и т. д. Это напоминает круги, которые расходятся по воде, если в пруд бросить камень. С течением времени круг этот расширяется. Если положить друг на друга снимки круга, полученные в разное время, они примут вид конуса, вершина которого совпадает с местом и временем, которые соответствуют месту и времени попадания камня в воду (рис. 2.3). Аналогичным образом распространяющийся от события свет образует (трехмерный) конус в (четырехмерном) пространстве-времени. Этот конус называется световым конусом будущего для этого события. Точно так же можно изобразить и другой конус, называемый световым конусом прошлого, который представляет собой множество событий, световой импульс от которых в принципе мог достичь данного события (рис. 2.4).
Рис. 2.3
Любое заданное событие P разделяет события Вселенной на три класса. События, до которых из события P можно «добраться» посредством частицы или волны, движущейся со скоростью меньше скорости света или равной ей, называются будущим события P. Они располагаются на излученной событием P расширяющейся световой сфере или внутри этой сферы. Следовательно, на пространственно-временной диаграмме эти события находятся внутри светового конуса будущего для события P или на этом конусе. Событие P может повлиять только на те события, которые находятся в его световом конусе будущего, потому что ничто не может двигаться быстрее света. Аналогично прошлое события P определяется как множество всех событий, из которых можно достичь события P, перемещаясь со скоростью меньше скорости света или равной ей. Это тот набор событий, который может повлиять на то, что происходит в P. События, которые не относятся ни к прошлому, ни к будущему события P, называются абсолютно удаленными от события P (рис. 2.5). То, что происходит при этих событиях, никак не может повлиять на событие P, а событие P, в свою очередь, никак не может повлиять на эти события. Например, если Солнце прямо сейчас погаснет, то это никак не повлияет на события, происходящие в настоящий момент на Земле, потому что эти события будут абсолютно удаленными от «выключения» Солнца (рис. 2.6). Мы узнаем об этом через восемь минут – столько требуется свету, чтобы преодолеть расстояние от Солнца до нас. Только тогда земные события окажутся внутри светового конуса будущего для события, при котором погасло Солнце. Точно так же мы не знаем, что происходит в настоящий момент на бóльших расстояниях во Вселенной: свет, который доходит до нас из далеких галактик, покинул их миллионы лет назад. В случае самого далекого из наблюдаемых объектов свет, который мы видим, покинул его восемь тысяч миллионов лет назад. Так вот: глядя на Вселенную, мы видим ее такой, какой она была в прошлом.
Рис. 2.4 и 2.5
Если пренебречь влиянием тяготения, – как это сделали Эйнштейн и Пуанкаре в 1905 году, – то мы получим то, что называют специальной теорией относительности. Для каждого события в пространстве-времени можно построить световой конус (множество всех лучей света в пространстве-времени, которые могут излучаться при рассматриваемом событии), и, поскольку скорость света одинакова для всех событий и во всех направлениях, все световые конусы одинаковы и направлены в одну и ту же сторону. Теория также говорит, что ничто не может перемещаться быстрее света. Это значит, что траектория любого объекта в пространстве и времени имеет вид линии, расположенной внутри светового конуса (рис. 2.7). Специальная теория относительности успешно объяснила, почему для всех наблюдателей скорость света одинакова (как показал опыт Майкельсона и Морли), и описала, что происходит, когда объект движется со скоростью, близкой к скорости света. Но она противоречила ньютоновской теории тяготения, которая гласит, что тела притягиваются друг к другу с силой, зависящей от расстояния между ними. Это означает, что если сдвинуть одно из тел, то в то же мгновение изменится сила, действующая на второе тело. Или, другими словами, гравитационное воздействие должно распространяться с бесконечно большой скоростью, а не со скоростью меньше скорости света или равной ей, как того требует специальная теория относительности. Между 1908 и 1914 годом Эйнштейн предпринял ряд неудачных попыток построить теорию тяготения, совместимую со специальной теорией относительности. Наконец, в 1915 году он предложил теорию, которая теперь известна как общая теория относительности.
Рис. 2.6
Эйнштейн сделал революционное предположение: тяготение существенно отличается от других сил и есть следствие того, что, вопреки привычным представлениям, пространство-время не является плоским – оно искривлено, или деформировано, распределенными в нем массой и энергией. Тела, например Земля, движутся по криволинейным орбитам, не потому что их принуждает к этому сила тяготения, а потому что такие орбиты представляют собой кратчайший путь в искривленном пространстве. Это так называемая геодезическая линия – ближайший аналог прямого пути в плоском пространстве. Геодезическая линия – это кратчайший (или самый длинный) путь между двумя соседними точками. Например, поверхность Земли представляет собой двумерное искривленное пространство. Геодезическая на поверхности Земли – это дуга большого круга и это кратчайший путь от одной точки до другой (рис. 2.8). Поскольку геодезическая – кратчайший путь между двумя аэропортами, то именно такой маршрут предлагает пилоту навигатор. В общей теории относительности тела всегда движутся вдоль прямых линий в четырехмерном пространстве-времени, но для нас в нашем трехмерном пространстве все выглядит как движение по искривленным траекториям. (Это как смотреть на самолет, пролетающий над холмистой местностью. Хотя самолет летит по прямой линии в трехмерном пространстве, его тень на двумерной поверхности перемещается по искривленной траектории.)
Стивен Хокинг, величайший ученый современности, изменил наш мир. Его уход – огромная потеря для человечества. В своей финальной книге, над которой Стивен Хокинг работал практически до самого конца, великий физик делится с нами своим отношением к жизни, цивилизации, времени, Богу, к глобальным вещам, волнующим каждого из нас.
Книга представляет собой сборник эссе выдающегося физика современности Стивена Хокинга, написанных им в период с 1976 по 1992 год. Это и автобиографические очерки, и размышления автора о философии науки, о происхождении Вселенной и ее дальнейшей судьбе.
Эта книга объединила семь лекций всемирно знаменитого ученого, посвященных происхождению Вселенной и представлениям о ней - от Большого Взрыва до черных дыр и теории струн. А главное, тому, как создать на основе частных физических теорий великую объединенную теорию всего.
По Вселенной на астероиде – не может быть! Может! – не сомневаются знаменитый астрофизик Стивен Хокинг (интервью с ним читайте здесь), его дочь Люси и бывший аспирант, а ныне популяризатор науки Кристоф Гальфар, которые в сентябре 2007 года представили свою первую книгу для детей о приключениях Джорджа и его друзей во Вселенной.В этой живой и весёлой книге они рассказали о фантастически интересных предметах – черных дырах, квазарах, астероидах, галактиках и параллельных вселенных – детям. Авторы особо подчеркивают, что хотели «представить современный взгляд на космологию от Большого взрыва до настоящего времени без какой бы то ни было магии».
Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.
И вот – долгожданная вторая часть о приключениях Джорджа в космосе – «Джордж и сокровища Вселенной». Все те, кто прочитал научно-приключенческую повесть Стивена и Люси Хокинг «Джордж и тайны Вселенной», с нетерпением ждали продолжения: что-то станется с бесстрашными и любознательными героями дальше? Какие загадки предстоит им решить? Что нового узнать? Куда подевался тщеславный злодей доктор Линн?Во второй книге трилогии, к неразлучным друзьям Джорджу и Анни присоединяется еще один мальчик – компьютерный гений Эммет.
Это история об Уильяме Перкине, который случайно изобрел пурпурный цвет. И навсегда изменил мир вокруг себя. До 1856 года красители были исключительно натуральными – их получали из насекомых, моллюсков, корней и листьев, а искусственное окрашивание было кропотливым и дорогим. Но в 1856 году все изменилось. Английский химик, работая над лекарством от малярии в своей домашней лаборатории, случайно открыл способ массового производства красителей на фабриках. Этот эксперимент – или даже ошибка – произвел революцию в моде, химии и промышленности. Эта книга – удивительный рассказ о том, как иногда даже самая маленькая вещь может менять и иметь такое продолжительное и важное воздействие. В формате PDF A4 сохранён издательский дизайн.
100-летие спустя после окончания Первой мировой войны и начала становления Версальской системы предыстория и история этих событий требуют дальнейшего исследования. Тема книги актуальна и в связи с территориальными изменениями в Центрально-Восточной Европе (ЦВЕ) в конце ХХ века. Многие сегодняшние проблемы берут начало в геополитической трансформации региона в ходе Первой мировой войны и после ее окончания. Концептуальной новизной работы является попытка проследить возвращение имперской составляющей во внешнюю политику России.
Собирая эту книгу из огромного количества материалов, я ставила перед собой нетривиальную задачу: на жизненном примере взаимоотношений ученого каббалиста Михаэля Лайтмана и его великого учителя Баруха Ашлага показать один из возможных путей в каббалу. Удалось ли мне решить эту задачу, пусть решает читатель От составителя книги Ларисы АртемьевойКнига представлена в сокращенном виде. Это связано с тем,что значительная часть материалов данной книги в расширенном и дополненном виде уже скоро (осень 2006 года) будет представлена в новой книги Михаила Лайтмана, в его редакции и с его комментариями.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
У вас в руках сборник рейтовских лекций Стивена Хокинга о черных дырах, прочитанных на BBC Radio 4. Трудно вообразить, кто мог бы рассказать об одних из самых загадочных космических объектов интереснее и проще, чем человек, сделавший космологию популярной наукой и отдавший многие годы изучению связанных с черными дырами эффектов. Те вопросы, которые остались без ответа, растолковал Дэвид Шукман, научный редактор BBC. Рейтовские лекции, или лекции имени лорда Джона Рейта, первого генерального директора BBC, просветителя и популяризатора, – цикл научно-популярных записей.
Фестиваль науки Starmus впервые прошел в 2011 году, и с тех пор стало традицией участие в нем ведущих ученых, знаменитостей в области космонавтики и музыки, которых объединяет страсть к популяризации знания о Земле и космосе. Учредитель фестиваля и астрофизик Гарик Исраелян создал экспертный совет, в который вошли такие замечательные личности, как астрофизик и рок-музыкант Брайан Мэй, эволюционный биолог Ричард Докинз, первооткрыватель микроволнового излучения Роберт Вильсон, теоретический физик Стивен Хокинг, космонавт Алексей Леонов, химик и лауреат Нобелевской премии Харольд Крото и другие. В этой книге собраны лекции ученых, которые многие годы работали над тем, чтобы воссоздать прошлое вселенной и представить ее структуру.
Под этой обложкой собраны работы Стивена Хокинга, которые дают наиболее полное представление о его жизни, работе, взглядах на науку и Вселенную: «Краткая история времени». «Моя краткая история» и отдельные лекции из сборника «Черные дыры и молодые вселенные».
Чтобы дать верные ответы на фундаментальные вопросы о Вселенной, понадобились века и смелость нескольких ученых. Николай Коперник в трактате «О вращении небесных сфер», Галилео Галилей в «Диалоге о двух главнейших системах мира», Иоганн Кеплер в «Гармонии мира», Исаак Ньютон в «Математических началах натуральной философии» и Альберт Эйнштейн в своих многочисленных статьях о принципе относительности открыли современникам глаза на то, как устроен небесный свод и что происходит за пределами видимости телескопа.