Кентерберийские головоломки - [7]
Интересно решить эту головоломку с наименьшим числом перекладываний сначала с 8, затем с 10 и, наконец, с 21 кругом сыра.
2. Головоломка Продавца папских индульгенций. Кроткий Продавец папских индульгенций, «с товаром воротясь из Рима», попросил было пощады, но компания миловать его не собиралась.
– Друзья я братья-паломники, – сказал он, – по правде говоря, моя задачка простовата, но лучшей придумать я не смог.
Однако его выдумка встретила хороший прием. Он развернул план, приведенный на рисунке, и пояснил, что на нем изображены шестьдесят четыре города, которые он должен был посетить, и соединяющие их дороги. Он пояснил далее, что отправной точкой ему служил город, обозначенный заштрихованным квадратом.
Служителю церкви следовало посетить каждый из оставшихся городов по одному и только одному разу за 15 переходов, причем каждый переход должно было совершить по прямой. Кончить свой путь можно где угодно, но нельзя упускать из виду, что отсутствие короткой дороги в нижней части рисунка не случайно – пути здесь нет.
3. Головоломка Мельника. Теперь очередь была за Мельником. Этот «ражий малый, костистый, узловатый и бывалый» отвел компанию в сторону и показал девять мешков с зерном, которые стояли, как показано на рисунке.
– Слушайте и внемлите, – сказал он, – я загадаю вам загадку про эти мешки пшеницы. И заметьте, господа хорошие, что сбоку стоит по одному мешку, затем идут пары мешков, а посредине вы видите три мешка. Клянусь святым Бенедиктом, получилось так, что если мы умножим пару, 28, на один мешок, 7, то получится 196, что и указано на средних мешках. Но если вы умножите другую пару, 34, на ее соседа, 5, то не получите при этом 196. Теперь я прошу вас, добрые господа, переставить эти девять мешков, как можно меньше надрываясь, так, чтобы каждая пара, умноженная на своего соседа, давала число, стоящее в середине.
Поскольку условием Мельника было передвигать как можно меньшее число мешков, у данной головоломки – только один ответ, который, вероятно, каждый сумеет найти.
4. Головоломка Рыцаря. «Тот рыцарь был достойный человек. С тех пор как в первый он ушел набег, Не посрамил он рыцарского рода» и, по свидетельству Чосера, «редко кто в стольких краях бывал». На его славном щите, который он, как вы видите на рисунке, показывает всей честной компании в харчевне «Табард», согласно всем правилам геральдики по серебряному полю рассыпаны розы. Когда Рыцаря попросили загадать свою загадку, он сказал, обращаясь к компании:
– Эту загадку мне задали в Турции, где я сражался с неверными. Возьми в руку кусок мела, сказали мне, и определи, сколько правильных квадратов сможешь ты указать с одной из восьмидесяти семи роз в каждом углу.
Читателю тоже, наверное, небезынтересно подсчитать число квадратов, которые можно образовать на щите, соединяя между собой четыре розы.
5. Загадки Батской ткачихи. «Лицом бойка, пригожа и румяна», Батская ткачиха, когда ее попросили оказать честь компании, сказала, что не привыкла к подобным вещам, но вот ее четвертый муж был до них весьма охоч, и она как раз вспомнила одну из его загадок, которая, быть может, еще не известна ее спутникам-паломникам. Вот она:
– Чем затычка, плотно загнанная в бочку, похожа на другую затычку, только что выпавшую из бочки?
Паломники быстро отгадали эту загадку, но ткачиха на этом не кончила и рассказала, как однажды она сидела у себя в комнате и шила, когда вошел ее сын.
Получив родительский приказ: «Уходи, мой сын, и не мешай мне!» он ответил:
– Я и вправду твой сын, но ты не моя мать, и до тех пор, пока ты не растолкуешь мне, как это может быть, я не двинусь с места.
Эта загадка надолго погрузила всю компанию в глубокую задумчивость, но вряд ли она доставит много трудностей читателю.
6. Головоломка Трактирщика. Быть может, ни одна головоломка не вызвала такого веселья и не оказалась столь занимательной, как та, которую предложил хозяин гостиницы «Табард», присоединившийся к компании. Подозвав поближе паломников, он сказал:
– Любезные господа мои, теперь настала моя очередь слегка сдвинуть ваши мозги набекрень. Сейчас я покажу вам одну штуку, из-за которой вам придется поломать голову. И все же, думается мне, в конце концов она покажется вам очень простой. Вот здесь стоит бочка прекрасного лондонского эля, а я держу в руках две меры – одна в пять, а другая в три пинты величиной. Прошу вас, скажите, как мне налить в каждую меру ровно по одной пинте?
Разумеется, нельзя пользоваться никакими другими сосудами или приспособлениями, нельзя также делать отметки на мерах. Очень многие и сегодня не найдут эту задачу легкой. И все-таки она осуществима.
7. Головоломка Оксфордского студента. Когда молчаливого и задумчивого Оксфордского студента, которому «милее двадцать книг иметь, чем платье дорогое, лютню, снедь», убедили задать головоломку своим сотоварищам по путешествию, он сказал:
– Я тут как-то размышлял над теми странными и таинственными талисманами, охраняющими от чумы и прочих зол, в которых замешаны магические квадраты. Глубока тайна подобных вещей, а числа таких квадратов воистину можно назвать великими. Но та небольшая загадка, которую я придумал накануне для всей компании, не настолько трудна, чтобы ее нельзя было решить, вооружившись не надолго терпением.
Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.