Кентерберийские головоломки - [8]

Шрифт
Интервал

Затем студент изобразил квадрат, показанный на рисунке, и сказал, что его надо разрезать на четыре части (вдоль прямых), которые можно было бы сложить заново так, чтобы при этом получился правильный магический квадрат.



У такого квадрата сумма чисел, стоящих в каждой строке, столбце и на каждой из двух больших диагоналей, равна 34. Эта головоломка для большинства читателей окажется нетрудной.


8. Головоломка Обойщика. Тут вперед выступил Обойщик, который, как вы догадались, обивал отнюдь не сосульки с крыш, а занимался обивкой стен. Он показал кусок красивого гобелена, который вы видите на рисунке.



– Этот кусок гобелена, сэры, – сказал он, – состоит из ста шестидесяти девяти маленьких квадратиков. Я хочу, чтобы вы указали мне способ, каким следует разрезать его на три части, дабы сложить из оных один новый кусок в форме правильного квадрата. Более того, поскольку это можно сделать разными способами, я хотел бы знать тот, при котором две из частей будут вместе содержать как можно больше этого богатого материала.

Обойщик, разумеется, считал, что разрезы должны проходить только по прямым, разделяющим квадратики. Кроме того, поскольку материал с обеих сторон не одинаков, части нельзя переворачивать, но особое внимание следует обратить на то, чтобы они точно подходили друг к другу по рисунку.


9. Головоломка Плотника. Плотник принес небольшой резной деревянный столбик и сказал:

– Живет в Лондоне один школяр, поднаторевший в астрологии и других странных науках. Как-то принес он ко мне деревянный брус, имевший три фута в длину, один в ширину и толщина которого тоже равнялась одному футу, и захотел, чтобы я вырезал из бруса столбик, который вы все здесь видите. Школяр пообещал, что заплатит мне за каждый кубический дюйм дерева, удаленный при работе. Я сперва взвесил брус. Оказалось, что он содержит ровно тридцать фунтов, тогда как этот столбик весит только двадцать. Значит, я удалил прочь один кубический фут (то есть одну треть) из бруса в три кубических фута. Но школяр уперся: нельзя, говорит, судить о плате за работу по весу, потому, мол, что брус в середине мог оказаться тяжелее или, наоборот, легче, чем снаружи. Как же я тогда проще всего смогу удовлетворить привередливого школяра и показать ему, сколько дерева было удалено?

На первый взгляд, этот вопрос кажется трудным, но ответ на него до того прост, что способ Плотника следует знать каждому, поскольку эта маленькая хитрость может пригодиться в повседневной жизни.


10. Головоломка Йомена.[6] Среди пилигримов был и Йомен. По словам Чосера, «лесной охоты ведал он закон», и у него «За кушаком, как и наряд, зеленым Торчала связка длинных острых стрел, Чьи перья Йомен сохранить умел – И слушалась стрела проворных рук. С ним был его большой могучий лук…» Когда в один из дней вся компания остановилась в придорожной таверне под названием «Шашки», у входа в которую красовалась шахматная доска, он решил продемонстрировать товарищам по путешествию свое умение. Выбрав девять стрел, он сказал:



– Заметьте себе, добрые сэры, как я пущу эти стрелы – каждую в середину одной из клеток этой доски, причем ни одна из стрел не окажется на одной линии ни с какой другой стрелой.

На приведенном здесь рисунке показано, как он это сделал: действительно, ни одна из стрел не находится на одной вертикали, горизонтали или диагонали ни с какой другой стрелой. Тут Йомен добавил:

– А вот вам и головоломка. Передвиньте три стрелы, каждую на одну из соседних клеток, так, чтобы при этом все девять стрел расположились вновь таким образом, чтобы ни одна не лежала на одной прямой ни с какой другой стрелой.

Под «соседней» имеется в виду любая клетка, расположенная рядом с данной по вертикали, горизонтали или диагонали.


11. Головоломка Монахини. – Уверена, что среди вас нет ни одного, – сказала Монахиня при одной из следующих оказий, – кто не знал бы, что многие монахи часто проводят время в играх, которые не очень-то приличествуют их сану. Карты или шахматы они искусно прячут от глаз аббата на полках своих келий в толстых фолиантах, в которых внутри вырезают для этого углубления. Стоит ли после этого сурово порицать монахинь за то, что они поступают так же? Я покажу маленькую игру-головоломку, в которую мы иногда играем между собой, когда наша добрая аббатиса отлучается из монастыря.

С этими словами Монахиня достала восемнадцать карт, показанных на рисунке.



Она объяснила, что головоломка состоит в том, чтобы сложить из этих карт колоду, причем, если затем выложить верхнюю карту на стол, следующую – в низ колоды, следующую – опять на стол, следующую – снова в низ колоды, пока все карты не окажутся на столе, то в результате должны получиться слова CANTERBURY PYLGRIMS.[7] Разумеется, каждую следующую карту нужно выкладывать на стол непосредственно справа от предыдущей. Это достаточно легко выполнить, если двигаться в обратную сторону, однако читатель должен попытаться получить ответ, не проделывая такой обратной операции и не пользуясь настоящими картами.


12. Головоломка Купца. Купец, который был среди паломников, отличался тем, что «курс экю высчитывать умел и знатно на размене наживался» и «… так искусно вел свои расчеты, Что пользовался ото всех почетом». Однажды утром, когда вся компания двигалась по дороге, Рыцарь и Сквайр, ехавшие рядом с Купцом, напомнили ему, что он все еще не порадовал компанию своей головоломкой.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.