Кентерберийские головоломки - [5]

Шрифт
Интервал

Порой требуется большая внимательность, чем может показаться с первого взгляда, дабы сформулировать условия головоломки таким образом, чтобы они одновременно были как ясными и точными, так и не слишком многословными, иначе пропадет интерес их решать. Однажды я, помнится, предложил головоломку, где что-то требовалось сделать с помощью «наименьшего числа прямых». Один человек, который был либо слишком умен, либо слишком глуп (я так и не понял, что же было на самом деле), заявил, что он решил эту головоломку с помощью всего одной прямой, потому что, как он выразился: «Остальные прямые я позаботился искривить!» Кто бы мог подумать о такой уловке?

Далее, если вы задаете головоломку о переправах через реку, в которой некое количество людей требуется переправить на другой берег, тогда как в лодке помещается лишь данное небольшое число пассажиров, то как только человек, который будет решать вашу головоломку, почувствует, что ему не удается с нею справиться, он немедленно призовет на помощь веревку, позволяющую перетянуть лодку с одного берега на другой. Вы скажете, что веревку использовать запрещено, тогда в ответ на это он попытается использовать течение реки. Однажды я был уверен, что совершенно исключил подобные трюки в одной головоломке такого типа, но все же нашелся хитроумный читатель, который заставил людей перебираться вплавь! Разумеется, некоторое число головоломок решается именно с помощью таких трюков, и если без этих трюков решения вообще не окажется, то это считается вполне законным. Мы должны напрячь все наши критические способности, чтобы определить, содержит ли наша головоломка подобную ловушку или нет; но здесь никогда не следует слишком поспешно принимать решение. Трюк в условиях задачи – это последний способ победить ее будущего читателя.

Порой люди пытаются озадачить нас небольшими искажениями смысла слов. Один человек задал мне недавно старую, известную задачу: «Мальчик ходит вокруг шеста, на котором сидит обезьяна; но обезьяна все время крутится на шесте так, что мордочка ее всегда обращена в сторону, противоположную той, куда смотрит мальчик. Обходит ли при этом мальчик вокруг обезьяны?» Я ответил, что если бы он дал мне определение понятия «ходить вокруг», то я дал бы ему ответ. Он, конечно, отказался. Тогда я сказал, что если понимать слова в их обычном, прямом значении, то безусловно мальчик обходит вокруг обезьяны. Как и ожидалось, он стал утверждать, что это не так, ибо под «хождением вокруг» понимал такое перемещение, при котором мы видим предмет со всех сторон. На что я возразил, что тогда слепой не может вообще обойти вокруг чего-либо. Тогда он подправил свое определение, сказав, что в действительности видеть все стороны нет нужды, но вы должны так двигаться, чтобы, глядя все время на предмет, могли бы увидеть его со всех сторон. На что я сказал, что в таком случае вы никогда не сможете обойти вокруг человека, сидящего в ящике! И т. д. Предмет этой дискуссии удивительно глуп, и если с самого начала принять простое и правильное определение того, что значит «ходить вокруг», то не останется вовсе никакой головоломки и вы избегнете утомительных и зачастую жарких споров.

Поняв условия задачи, посмотрите, нельзя ли их упростить, ибо на этом пути можно избавиться от множества затруднений. Всегда озадачивает классический вопрос о человеке, который, указав на портрет, сказал: «Сестер и братьев нет у меня, но отец этого человека – сын моего отца». Каково родственное отношение говорившего к человеку на портрете? Задача сразу же упрощается, если сказать, что «сын моего отца» означает «я сам» или «мой брат». Но поскольку у говорившего не было братьев, то вполне очевидно, что это значит «я сам». Таким образом, утверждение означает всего лишь: «Отец этого человека – я сам», то есть на портрете изображен сын говорившего. И все же люди порой размышляют над этим вопросом целый час!

Во многих областях царства Головоломок есть еще не раскрытые тайны. Давайте рассмотрим несколько примеров из мира чисел – небольшие штучки, понять которые способен ребенок, хотя величайшим умам не удалось их решить. Каждый, наверное, слышал выражение «трудно квадрировать круг», хотя далеко не все имеют представление о том, что это означает. Если у вас есть круг заданного диаметра и вы хотите найти сторону квадрата в точности той же площади, то вы имеете дело с задачей о квадратуре круга. Так вот, решить ее совершенно точно невозможно (хотя мы можем найти ответ, достаточно точный для практических целей), ибо не существует рационального числа, равного отношению диаметра к окружности. Но лишь недавно доказано, что эта задача не разрешима, ибо одно дело безуспешно пытаться решить задачу и совсем другое – доказать, что она не имеет решения. Только невежественные любители головоломок могут сегодня тратить время, пытаясь квадрировать круг.

Точно так же мы не можем выразить диагональ квадрата через его сторону с помощью рационального числа. Если у вас есть квадратное окно со стороной ровно в один фут, то существует расстояние от одного его угла до другого, хотя вам не удастся выразить его рациональным числом. Простодушный человек, быть может, предположит, что мы можем взять диагональ длиной в один фут, а затем уже построить наш квадрат. И все же нам это не удастся; более того, мы не сможем выразить сторону квадрата рациональным числом, каким бы способом ни стремились к этому.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.