Кентерберийские головоломки - [2]
Человек испытывает страсть к проникновению в тайны Природы; только каждый выбирает свой путь в незнаемое. Сколько жизней потрачено на превращение металлов в золото, на создание вечного двигателя, на поиски средств от злокачественных заболеваний и даже на то, чтобы полететь!
С утра до вечера мы, сами того не замечая, пребываем во власти головоломок. Но головоломки головоломкам рознь. Даже те из них, которые носят развлекательный характер, иногда основываются на каком-либо интересном и поучительном принципе, а иногда вовсе лишены его, как в головоломке со случайным образом разрезанным на части рисунком, который требуется сложить вновь, подобно детским кубикам с картинками. И если первые требуют какого-то напряжения ума, то вторые совершенно бездумны.
Любопытная склонность к созданию головоломок не отличает какую-либо расу или исторический период. Она с рождения заложена в каждом человеке независимо от того, когда он пребывал на земле, хотя может проявляться в самых различных формах. Не играет роли, кому конкретно она приписывается, египетскому ли сфинксу, библейскому Самсону, индийскому факиру, китайскому философу, тибетскому махатме или европейскому математику.
Каждый из нас постоянно вынужден решать головоломки – ведь всякая игра, всякий вид спорта, как и любое другое времяпрепровождение, предлагают нам задачи большей или меньшей трудности. Нечаянный вопрос ребенка, два-три слова, на ходу брошенных велосипедистом своему напарнику, реплика одного игрока в крикет другому или яхтсмена, лениво оглядывающего горизонт, может оказаться задачей отнюдь не легкого свойства. Короче, все мы ежедневно, чаще всего не сознавая того, задаем друг другу бесчисленные головоломки.
Однако решение настоящей головоломки требует известного напряжения ума и изобретательности, и хотя при решении такого рода задач бесспорную помощь оказывают математические познания и некоторое знакомство с логикой, все же порой случается, что гораздо существеннее здесь природная сообразительность и смекалка. Дело в том, что многие из наилучших задач нельзя решить каким-то знакомым регулярным методом, они требуют совершенно оригинального подхода. Вот почему даже при большом и богатом опыте некоторые головоломки порой лучше поддаются обладателю острого от природы ума, а не высокой образованности. Не случайно, что при игре в шахматы или шашки больших успехов добиваются люди, лишенные специального математического образования, хотя часто может оказаться, что они наделены математическими способностями, не получившими должного развития.
Удивительно, какое удовольствие хорошая головоломка доставляет огромному большинству людей. Даже сознание, что она не имеет практического значения, не удерживает нас от ее решения, а уж в случае удачи чувство удовлетворения само по себе служит нам наградой за труды. Что же это за таинственное очарование, которое для многих оказывается необоримым? Почему нам нравится «озадачивать» себя? Любопытно, что с решением интерес к задаче моментально исчезает. Мы это сделали, вот и все. Но почему мы стремились это сделать?
Ответ здесь достаточно прост: нам доставляет удовольствие сам процесс отыскания решения как таковой. Хорошая головоломка, подобно добродетели, сама себе служит наградой. Человека привлекает само соприкосновение с тайной, и он не находит места, пока ее не раскроет. Кроме того, нам не хочется отставать от других, и это естественно – даже ребенку свойственно это чувство.
В своем путешествии по царству Головоломок мы столкнемся с интересными моментами самого различного характера. Такое разнообразие имеет свои преимущества. Совершают ошибку те, кто ограничивается лишь малым уголком этого царства и лишает себя тем самым возможности получить удовольствие от столкновения с новым, тем более что оно вполне в пределах их досягаемости. Не следует увлекаться либо только акростихами и другими словесными головоломками, либо только математическими или шахматными задачами (последние представляют собой головоломки на шахматной доске, которые почти не имеют практического значения для игры в шахматы).
В решении головоломок есть и реальная польза. Считается, что регулярные упражнения столь же полезны для ума, как и для тела, и в обоих случаях не так важно, что мы делаем, как то, что мы это делаем. Ежедневная прогулка, которую нам рекомендуют доктора, или ежедневное упражнение ума могут сами по себе выглядеть потерей времени, однако в конечном итоге – это его подлинная экономия. В одном из романов английского писателя-юмориста А. Смита героиня, по ее собственному признанию, страдает, ощущая в своем мозгу какие-то паутинки. Быть может, это редкое заболевание, но в более метафорическом смысле многие из нас весьма склонны страдать от «паутины в мозгах» и нет ничего лучше решения головоломок для того, чтобы вымести ее вон. Они держат начеку ум, стимулируют воображение и развивают умение рассуждать. Порою головоломки оказываются полезными не только в таком косвенном отношении, но и непосредственно помогают нам, сообщая какие-то трюки и «хитрости», которые могут пригодиться в жизни в совершенно неожиданные моменты и совершенно непредвиденным образом.
Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.