Гюйгенс Волновая теория света. В погоне за лучом - [39]
Гравюра на странице 149 (ниже по тексту), взятая из первой части «Маятниковых часов», показывает полный проект часов Гюйгенса.
Колебание маятника имеет постоянный период и не зависит от размаха колебаний, передавая венцу равномерный ритм.
В то время часы Гюйгенса установили рекорд точности: ошибка была меньше одной минуты в день. Разумеется, изобретение ученого было не единственным в области часового дела. Более прозаические альтернативы вскоре затмили блеск его гениальной находки. С 1670 по 1680 год были созданы спуск с якорем и спуск Грэхема, которые были совместимы с маленькими колебаниями обычного маятника.
Я прочел его с большим удовольствием, найдя в нем множество остроумных и полезных рассуждений, достойных своего автора.
Ответ Ньютона после прочтения «Маятниковых часов» Гюйгенса
Пятая часть «Маятниковых часов» оканчивается 13 теоремами без доказательств о центробежной силе. Из них выводится, что ускорение, которое постоянно действует на тенденцию тела следовать по прямой линии и заставляет его описывать окружность, подтягивая его к своему центру, равно υ>2/r (где υ — скорость тела, а r — радиус окружности). Ньютон пришел к такому же выводу, следуя другим путем, но он не опубликовал свой результат, так что эту партию выиграл Гюйгенс.
В «Маятниковых часах» содержится также небольшой трактат по геометрии. После того как ученый занялся эволютами, искушение создать их общую теорию было слишком велико, и, разумеется, Гюйгенс не мог ему не поддаться. Он разработал метод определения эволюты любой кривой и применил его к параболе, эллипсу и гиперболе, а также связал квадратуру кривых с их эволютами.
Измерение времени завладело воображением Гюйгенса, став его вторым большим наваждением. Маятниковые часы прекрасно работали в гостиных Людовика XIV, но для того чтобы помочь капитану корабля определить его положение после шторма, механизм должен быть способным переносить постоянную тряску. К сожалению, это испытание часы не прошли. Они останавливались или падали на землю, хотя их и пытались крепко привязывать к потолочной балке. Гюйгенс был очень огорчен уязвимостью маятников во время морских путешествий и пересмотрел свой подход. Зная, что хорошие часы должны управляться периодическим движением, он попробовал другой способ: вращение венца подчинялось ритму сжатия и распрямления металлической пружины, закрученной в спираль. У этой модели было еще одно преимущество: она позволяла создавать наручные часы — нечто невообразимое для того времени. Но эйфория пропала, когда при попытке запатентовать свое открытие в Лондоне Гюйгенс столкнулся с гневной реакцией Роберта Гука. Плодовитость и разносторонние интересы этого ученого вызывали удивление, но иногда служили прекрасным примером поговорки «За двумя зайцами погонишься — ни одного не поймаешь». Гук часто замечал разные научные возможности, но из-за нехватки времени или из-за того, что его знания математики не соответствовали физической интуиции, не воплощал их на деле. Однако он заявил, что изобрел часы с пружиной еще 16 лет назад, а открытие Гюйгенса «не стоило и пенни». Нидерландский ученый был шокирован тоном оппонента и с досадой жаловался на «эгоистические уверения» Гука, что «все изобрел только он».
Портрет Г юйгенса кисти Каспара Нечера, сделанный в период выздоровления ученого в Гааге в 1671 году.
Часы, созданные Гюйгенсом (Музей науки в Лондоне).
Обложка «Маятниковых часов» и гравюра из книги, на которой изображен чертеж часов Гюйгенса.
Чтобы закончить краткое описание вклада Гюйгенса в науку, вернемся на 40 лет назад и рассмотрим одну из его первых работ, в которой особенно хорошо заметен его изящный стиль. Христиану было тогда 23 года, и ни время, ни шлифование линз, ни свет еще не захватили его внимание. Несмотря на молодой возраст, к тому времени он уже успел зарекомендовать себя как одаренный последователь Архимеда, сделав анализ стабильности тел в воде, и прославился математической виртуозностью своих квадратур. Гюйгенс впервые громко опроверг теорию Декарта, в частности его законы об упругом столкновении тел (вскоре за Христианом последуют и другие ученые). Первые важные результаты Гюйгенс получил в 1652 году, но не стал публиковать их, намереваясь завершить более амбициозный проект, которым с перерывами занимался на протяжении нескольких лет. В 1656 году он начал писать трактат, который обрел законченный вид в 1667 году (De motu corporum ex percussione — «О движении тел под влиянием удара») и был издан после смерти исследователя. Он поторопился обнародовать часть результатов даже без доказательств и сделал это в 1669 году сначала в Journal des Savants, а затем в Philosophical Transactions — после того как узнал, что Джон Валлис и Кристофер Рен в январе издали статью на ту же тему. Как часто это бывало с Гюйгенсом, его открытия, долго пролежав в столе, начинали устаревать.
Декарт сформулировал свои законы о столкновении в «Началах философии» в 1644 году. «Начала» были одной из основ его представлений о механике, по которым различные физические взаимодействия, такие как сила тяжести, свет или магнетизм, сводились к столкновению частиц эфира. Французский философ, будучи автором обширной системы, способной объяснить устройство мироздания, имел четкое представление о том, как должна вести себя природа. Если же результаты экспериментов противоречили этому представлению, он просто игнорировал такую дерзость:
Альберт Эйнштейн – один из самых известных людей прошлого века. Отгремело эхо той бурной эпохи, в которую ученому выпало жить и творить, эхо мировых войн и ядерных атак, но его гениальные открытия и сегодня не потеряли остроты: закон взаимосвязи массы и энергии, выраженный знаменитой формулой Е = mc² , поистине пионерская квантовая теория и особенно теория относительности, навсегда изменившая наши, до того столь прочные, представления о времени и пространстве.
Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.
«Литературная работа известного писателя-казахстанца Павла Косенко, автора книг „Свое лицо“, „Сердце остается одно“, „Иртыш и Нева“ и др., почти целиком посвящена художественному рассказу о культурных связях русского и казахского народов. В новую книгу писателя вошли биографические повести о поэте Павле Васильеве (1910—1937) и прозаике Антоне Сорокине (1884—1928), которые одними из первых ввели казахстанскую тематику в русскую литературу, а также цикл литературных портретов наших современников — выдающихся писателей и артистов Советского Казахстана. Повесть о Павле Васильеве, уже знакомая читателям, для настоящего издания значительно переработана.».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Флора Павловна Ясиновская (Литвинова) родилась 22 июля 1918 года. Физиолог, кандидат биологических наук, многолетний сотрудник электрофизиологической лаборатории Боткинской больницы, а затем Кардиоцентра Академии медицинских наук, автор ряда работ, посвященных физиологии сердца и кровообращения. В начале Великой Отечественной войны Флора Павловна после краткого участия в ополчении была эвакуирована вместе с маленький сыном в Куйбышев, где началась ее дружба с Д.Д. Шостаковичем и его семьей. Дружба с этой семьей продолжается долгие годы. После ареста в 1968 году сына, известного правозащитника Павла Литвинова, за участие в демонстрации против советского вторжения в Чехословакию Флора Павловна включается в правозащитное движение, активно участвует в сборе средств и в организации помощи политзаключенным и их семьям.
21 мая 1980 года исполняется 100 лет со дня рождения замечательного румынского поэта, прозаика, публициста Тудора Аргези. По решению ЮНЕСКО эта дата будет широко отмечена. Писатель Феодосий Видрашку знакомит читателя с жизнью и творчеством славного сына Румынии.
В этой книге рассказывается о жизни и деятельности виднейшего борца за свободную демократическую Румынию доктора Петру Грозы. Крупный помещик, владелец огромного состояния, широко образованный человек, доктор Петру Гроза в зрелом возрасте порывает с реакционным режимом буржуазной Румынии, отказывается от своего богатства и возглавляет крупнейшую крестьянскую организацию «Фронт земледельцев». В тесном союзе с коммунистами он боролся против фашистского режима в Румынии, возглавил первое в истории страны демократическое правительство.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.
Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.
Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия.
Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.