Гюйгенс Волновая теория света. В погоне за лучом - [38]
РИС. 1
РИС. 2
когда чистит огромную кастрюлю, в которой очищался жир кита. Он понимает, что с какой бы высоты ни падало мыло, у него всегда уходит одинаковое количество времени, чтобы дойти до дна. Какой математической модели следовал изгиб дна кастрюль «Пеко»? За двести лет до появления Измаила, в декабре 1659 года, Гюйгенс открыл, что речь шла о перевернутой циклоиде.
Циклоида была одной из наиболее хорошо изученных кривых для математиков того времени. Из-за споров вокруг нее циклоиду даже называли Еленой геометров и яблоком раздора. Говорят, что Паскаль начал заниматься этой кривой, чтобы отвлечься от зубной боли. Способ сработал, и ученый счел его знаком свыше, говорящим, что ему следует глубже изучить свойства циклоиды. И здесь на сцене опять появляется Галилей, поскольку именно он дал кривой это название, восхищенный ее «изящнейшим изгибом, так хорошо подходящим для арок мостов».
Самый простой способ нарисовать циклоиду состоит в том, чтобы отметить на окружности точку и сделать так, чтобы окружность катилась без скольжения. Траектория, по которой будет двигаться точка, и будет циклоидой (см. рисунок 4). Эта кривая имеет особые отношения с силой тяжести. В 1696 году Якоб Бернулли бросил научному сообществу вызов: если соединить две точки А и В линией и запустить по ней шар, то какую форму должна принять линия, чтобы шар затратил как можно меньше времени на то, чтобы пройти от А к В? Ответом опять была перевернутая циклоида.
РИС. 4
РИС. 5
РИС. 6
РИС. 7
РИС. 8
Гюйгенса больше всего интересовало такое свойство кривой, как ее изохронность: вне зависимости от того, с какой высоты падает тело, если оно падает по циклоиде, то всегда затратит одинаковое количество времени, чтобы дойти до нижней точки. Падение составляет половину движения маятника, потому что после того как тело достигает нижней точки, полученный импульс заставляет его вернуться наверх. Если ограничение его восхождения симметрично тому, что влияет на его падение (не учитывая трение), то тело поднимется на ту же высоту, с которой упало, и опять спустится. Таким образом, одинаковые временные промежутки падения для всех высот становятся одинаковыми промежутками восхождения. Период — это сумма двух симметричных восхождений и падений. Если время не зависит от высоты, то период не будет зависеть от ширины колебаний. Гюйгенс нашел теоретическое решение своей задачи — идеальный маятник, колебания которого происходят по циклоиде. Теперь ему надо было дополнить это решение элементами, которыми он уже располагал. Ученый перевел задачу из физической плоскости в геометрическую. Он должен был найти способ нарисовать дугу циклоиды при помощи циркуля, поскольку маятник описывает именно часть окружности. Для этого Гюйгенс начал играть с длиной веревки. Достаточно было поставить на ее пути гвоздь, чтобы, начиная с этой точки, происходило маятникообразное движение меньшей длины. Несколько гвоздей, расставленные друг за другом на разной высоте, заставили бы гирю описывать окружность все меньшего радиуса, который укорачивается следующим гвоздем и так далее (см. рисунок 5).
С математической точки зрения любую кривую можно разделить на отрезки, каждый из которых будет представлять собой приближение к очень короткой дуге окружности. Радиус каждой окружности будет зависеть от изгиба отрезка: там, где изгиб небольшой, необходимо будет расставлять ножки циркуля шире, там, где изгиб меньше, наоборот, циркуль надо будет раздвигать не так широко (см. рисунок 6).
Проделывая эту операцию на листе бумаги и отмеряя циркулем дуги окружностей, мы получим ряд дырок, которые оставит циркуль. Соединив их, мы получим еще одну кривую, связанную с первой, которая называется ее эволютой (см. рисунок 7). Гюйгенс сделал удивительное открытие: эволютой циклоиды является еще одна циклоида (см. рисунок 8).
Таким образом, если мы повесим маятник в точке С1 и разместим несколько гвоздей от С>2 до С>6, круговая естественная траектория веса Р будет исправлена пять раз, пока не будет направлена по циклоиде. Апроксимация будет тем лучше, чем больше гвоздей размещены вдоль циклоиды-эволюты. На практике Гюйгенс вместо гвоздей использовал две металлические пластины, которым он придал форму дуг циклоиды. Таким образом ученый мог влиять на колебание маятника, укорачивая и удлиняя веревку в зависимости от размаха колебаний.
Гюйгенс играл с природой в математические игры, чтобы получить настоящее периодическое движение там, где его не было, и это стало поворотным моментом в истории науки. Ученый писал своему старому учителю ван Схотену, делясь с ним радостью изобретения: «Без сомнения, это мое лучшее открытие».
Можно рассмотреть работу маятника Гюйгенса и с другой точки зрения. В классическом маятнике гиря очерчивает дуги окружности. На ее период, начиная с определенного угла, начинает оказывать влияние размах колебаний. Чем больше угол, тем больше период. С другой стороны, Галилей говорил, что длина веревки также влияет на время, затраченное гирей для завершения каждого цикла. Чем длиннее веревка, тем больше период. Следовательно, мы видим две противоположные тенденции. Увеличение размаха удлиняет период. Уменьшение длины веревки уменьшает его. Что произойдет, если, по мере того как увеличивается угол, веревка будет укорачиваться, и вышеупомянутые влияния компенсируют друг друга? В этом и состояла задача пластины в виде циклоиды.
Альберт Эйнштейн – один из самых известных людей прошлого века. Отгремело эхо той бурной эпохи, в которую ученому выпало жить и творить, эхо мировых войн и ядерных атак, но его гениальные открытия и сегодня не потеряли остроты: закон взаимосвязи массы и энергии, выраженный знаменитой формулой Е = mc² , поистине пионерская квантовая теория и особенно теория относительности, навсегда изменившая наши, до того столь прочные, представления о времени и пространстве.
Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.
«Литературная работа известного писателя-казахстанца Павла Косенко, автора книг „Свое лицо“, „Сердце остается одно“, „Иртыш и Нева“ и др., почти целиком посвящена художественному рассказу о культурных связях русского и казахского народов. В новую книгу писателя вошли биографические повести о поэте Павле Васильеве (1910—1937) и прозаике Антоне Сорокине (1884—1928), которые одними из первых ввели казахстанскую тематику в русскую литературу, а также цикл литературных портретов наших современников — выдающихся писателей и артистов Советского Казахстана. Повесть о Павле Васильеве, уже знакомая читателям, для настоящего издания значительно переработана.».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Флора Павловна Ясиновская (Литвинова) родилась 22 июля 1918 года. Физиолог, кандидат биологических наук, многолетний сотрудник электрофизиологической лаборатории Боткинской больницы, а затем Кардиоцентра Академии медицинских наук, автор ряда работ, посвященных физиологии сердца и кровообращения. В начале Великой Отечественной войны Флора Павловна после краткого участия в ополчении была эвакуирована вместе с маленький сыном в Куйбышев, где началась ее дружба с Д.Д. Шостаковичем и его семьей. Дружба с этой семьей продолжается долгие годы. После ареста в 1968 году сына, известного правозащитника Павла Литвинова, за участие в демонстрации против советского вторжения в Чехословакию Флора Павловна включается в правозащитное движение, активно участвует в сборе средств и в организации помощи политзаключенным и их семьям.
21 мая 1980 года исполняется 100 лет со дня рождения замечательного румынского поэта, прозаика, публициста Тудора Аргези. По решению ЮНЕСКО эта дата будет широко отмечена. Писатель Феодосий Видрашку знакомит читателя с жизнью и творчеством славного сына Румынии.
В этой книге рассказывается о жизни и деятельности виднейшего борца за свободную демократическую Румынию доктора Петру Грозы. Крупный помещик, владелец огромного состояния, широко образованный человек, доктор Петру Гроза в зрелом возрасте порывает с реакционным режимом буржуазной Румынии, отказывается от своего богатства и возглавляет крупнейшую крестьянскую организацию «Фронт земледельцев». В тесном союзе с коммунистами он боролся против фашистского режима в Румынии, возглавил первое в истории страны демократическое правительство.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.
Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.
Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия.
Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.