Good Vibrations. Музыка, которая исцеляет [заметки]
1
Немецкая детская песенка. Сл. народные, муз. А. Гретри. — Прим. ред.
2
Hublin, J. J., Ben-Ncer, A., Bailey, S. E., Freidline, S. E., Neubauer, S., Skinner, M. M., ... & Gunz, P. (2017): New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens, Nature, 546 (7657), S. 289.
3
Attwell, D., & Laughlin, S. B. (2001): An energy budget for signaling in the grey matter of the brain, Journal of Cerebral Blood Flow & Metabolism, 21(10), S. 1133–1145.
4
Lehmann, C., Welker, L., & Schiefenhövel, U. W. (2008): Der Singstreit in humanethologischer Perspektive, Musicae Scientiae, 12 (1), S. 115–145.
5
Blasi, D. E., Wichmann, S., Hammarström, H., Stadler, P. F., & Christiansen, M. H. (2016): Sound-meaning Association Biases Evidenced Across Thousands of Languages, Proceedings of the National Academy of Sciences, 113 (39), S. 10818–10823.
6
Juslin, P. N., & Laukka, P. (2003): Communication of emotions in vocal expression and music performance: Different channels, same code?, Psychological Bulletin, 129 (5), S. 770.
7
Koelsch, S., Skouras, S., Fritz, T., Herrera, P., Bonhage, C., Küssner, M. B., & Jacobs, A. M. (2013): The roles of superficial amygdala and auditory cortex in music-evoked fear and joy, Neuroimage, 81, S. 49–60.
8
Музыку, которую мы использовали в своем эксперименте, вы можете скачать или прослушать на сайте stefan-koelsch.de/stimulus_repository/joy_fear_neutral_music.zip
9
Fritz, T., Jentschke, S., Gosselin, N., Sammler, D., Peretz, I., Turner, R., ... & Koelsch, S. (2009): Universal recognition of three basic emotions in music, Current Biology, 19 (7), S. 573–576.
10
Zimmermann, E., Leliveld, L. M. C., & Schehka, S. (2013): Toward the evolutionary roots of affective prosody in human acoustic communication: a comparative approach to mammalian voices, Evolution of emotional communication: from sounds in nonhuman mammals to speech and music in man, S. 116, 132.
11
Ilari, B. (2002): Music and babies: A review of research with implications for music educators, Update, Applications of Research in Music Education, 21 (2), S. 17–26.
12
Trehub, S. E., Unyk, A. M., & Trainor, L. J. (1993): Adults identify infant-directed music across cultures, Infant behavior and development, 16 (2), S. 193–211.
13
Ravignani, A., Delgado, T., & Kirby, S. (2017): Musical evolution in the lab exhibits rhythmic universals, Nature Human Behaviour, 1 (1), 0007.
14
Zentner, M., & Eerola, T. (2010): Rhythmic engagement with music in infancy, Proceedings of the National Academy of Sciences, 107 (13), S. 5768–5773.
15
Ilari, B. (2015): Rhythmic engagement with music in early childhood: A replication and extension, Journal of Research in Music Education, 62 (4), S. 332–343.
16
Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014): Interpersonal synchrony increases prosocial behavior in infants, Developmental Science, 17(6), S. 1003–1011.
17
Кirschner, S., & Tomasello, M. (2010): Joint music making promotes prosocial behavior in 4-year-old children, Evolution and Human Behavior, 31(5), S. 354–364.
18
Herculano-Houzel, S. (2009): The human brain in numbers: a linearly scaled-up primate brain, Frontiers in Human Neuroscience, 3, S. 31.
19
Koelsch, S., Gunter, T., Friederici, A. D., & Schröger, E. (2000): Brain indices of music processing: ›nonmusicians‹ are musical, Journal of Cognitive Neuroscience, 12 (3), S. 520–541.
20
Koelsch, S., Kilches, S., Steinbeis, N., & Schelinski, S. (2008): Effects of unexpected chords and of performer’s expression on brain responses and electrodermal activity, PLoS One, 3 (7), e2631.
21
Jentschke, S., Friederici, A. D., & Koelsch, S. (2014): Neural correlates of music-syntactic processing in two-year old children, Developmental Cognitive Neuroscience, 9, S. 200–208.
22
Kempe, V., Bublitz, D., & Brooks, P. J. (2015): Musical ability and non-native speech-sound processing are linked through sensitivity to pitch and spectral information, British Journal of Psychology, 106 (2), S. 349–366.
23
Kuhl, P. K., Stevens, E., Hayashi, A., Deguchi, T., Kiritani, S., & Iverson, P. (2006): Infants show a facilitation effect for native language phonetic perception between 6 and 12 months, Developmental Science, 9 (2), F13– 21.
24
DeCasper, A. J., & Fifer, W. P. (1980): Of human bonding: Newborns prefer their mothers’ voices, Science, 208 (4448), S. 1174–1176.
25
Moon, C., Cooper, R. P., & Fifer, W. P. (1993): Two-day-olds prefer their native language, Infant Behavior and Development, 16 (4), S. 495–500.
26
Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D. (2001): Musical syntax is processed in Broca’s area: an MEG study, Nature Neuroscience, 4 (5), S. 540.
27
Koelsch, S., Gunter, T. C., von Cramon, D. Y., Zysset, S., Lohmann, G., & Friederici, A. D. (2002): Bach speaks: A cortical language-network serves the processing of music, Neuroimage, 17 (2), S. 956–966.
28
Koelsch, S., Fritz, T., Schulze, K., Alsop, D., & Schlaug, G. (2005): Adults and children processing music: an fMRI study, Neuroimage, 25 (4), S. 1068–1076.
29
Perani, D., Saccuman, M. C., Scifo, P., Spada, D., Andreolli, G., Rovelli, R., ... & Koelsch, S. (2010): Functional specializations for music processing in the human newborn brain, Proceedings of the National Academy of Sciences, 107 (10), S. 4758–4763.
30
Carr, K. W., White-Schwoch, T., Tierney, A. T., Strait, D. L., & Kraus, N. (2014): Beat synchronization predicts neural speech encoding and reading readiness in preschoolers, Proceedings of the National Academy of Sciences, 111 (40), S. 14559–14564.
31
Jentschke, S., & Koelsch, S. (2009): Musical training modulates the development of syntax processing in children, Neuroimage, 47(2), S. 735–744.
32
Clément, S., Planchou, C., Béland, R., Motte, J., & Samson, S. (2015): Singing abilities in children with Specific Language Impairment (SLI), Frontiers in Psychology, 6, S. 420.
33
Bhide, A., Power, A., & Goswami, U. (2013): A rhythmic musical intervention for poor readers: A comparison of efficacy witha letter-based intervention, Mind, Brain, and Education, 7 (2), S. 113–123.
34
Flaugnacco, E., Lopez, L., Terribili, C., Montico, M., Zoia, S., & Schön, D. (2015): Music training increases phonological awareness and reading skills in developmental dyslexia: a randomized control trial, PLoS One, 10 (9), e0138715.
35
Schellenberg, E. G. (2006): Long-term positive associations between music lessons and IQ, Journal of Educational Psychology, 98 (2), S. 457; Schellenberg, E. G., Corrigall, K. A., Dys, S. P., & Malti, T. (2015): Group music training and children’s prosocial skills, PLoS One, 10 (10), e0141449.
36
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998): Increased auditory cortical representation in musicians, Nature, 392 (6678), S. 811.
37
Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007): Musical experience shapes human brainstem encoding of linguistic pitch patterns, Nature Neuroscience, 10 (4), S. 420.
38
Kraus, N., & Strait, D. L. (2015): Emergence of biological markers of musicianship with school-based music instruction, Annals of the New York Academy of Sciences, 1337 (1), S. 163–169.
39
Moreno, S., Marques, C., Santos, A., Santos, M., Castro, S. L., & Besson, M. (2008): Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity, Cerebral Cortex, 19 (3), S. 712–723.
40
Gaser, C., & Schlaug, G. (2003): Brain structures differ between musicians and non-musicians, Journal of Neuroscience, 23 (27), S. 9240–9245.
41
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004): Neuroplasticity: changes in grey matter induced by training, Nature, 427 (6972), S. 311.
42
Boyke, J., Driemeyer, J., Gaser, C., Büchel, C., & May, A. (2008): Training-induced brain structure changes in the elderly, Journal of Neuroscience, 28 (28), S. 7031–7035.
43
Driemeyer, J., Boyke, J., Gaser, C., Büchel, C., & May, A. (2008): Changes in gray matter induced by learning-revisited, PloS One, 3 (7), e2669.
44
Jacobs, B., Schall, M., Prather, M., Kapler, E., Driscoll, L., Baca, S., ... & Treml, M. (2001): Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study, Cerebral Cortex, 11 (6), S. 558–571.
45
Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, F. (2005): Extensive piano practicing has regionally specific effects on white matter development, Nature Neuroscience, 8 (9), S. 1148.
46
Schlaug, G., Jäncke, L., Huang, Y., Staiger, J. F., & Steinmetz, H. (1995): Increased corpus callosum size in musicians, Neuropsychologia, 33 (8), S. 1047–1055.
47
Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., & Schlaug, G. (2009): Musical training shapes structural brain development, Journal of Neuroscience, 29 (10), S. 3019–3025.
48
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993): The role of deliberate practice in the acquisition of expert performance, Psychological Review, 100 (3), S. 363
49
Kölsch, S. (2001): Der soziale Umgang mit Fähigkeit: die geschlossene Gesellschaft und ihre Freunde, Dareschta.
50
Kleim, J. A., Hogg, T. M., VandenBerg, P. M., Cooper, N. R., Bruneau, R., & Remple, M. (2004): Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning, Journal of Neuroscience, 24 (3), S. 628–633.
51
Klimecki, O. M., Leiberg, S., Lamm, C., & Singer, T. (2012): Functional neural plasticity and associated changes in positive affect after compassion training, Cerebral Cortex, 23 (7), S. 1552–1561.
52
Danner, D. D., Snowdon, D. A., & Friesen, W. V. (2001): Positive emotions in early life and longevity: findings from the nun study, Journal of Personality and Social Psychology, 80 (5), S. 804.
53
Gene Weingarten in der Washington Post vom 8. April 2007.
54
Sven Oliver Müller (2014): Das Publikum macht die Musik. Musikleben in Berlin, London und Wien im 19. Jahrhundert, Göttingen, Vandenhoeck & Ruprecht.
55
Schulreich, S., Heussen, Y. G., Gerhardt, H., Mohr, P. N., Binkofski, F. C., Koelsch, S., & Heekeren, H. R. (2014): Music-evoked incidental happiness modulates probability weighting during risky lottery choices, Frontiers in Psychology, 4, S. 981.
56
Bhattacharya, J., & Lindsen, J. P. (2016): Music for a brighter world: Brightness judgment bias by musical emotion, PLoS One, 11 (2), e0148959.
57
Taruffi, L., Pehrs, C., Skouras, S., & Koelsch, S. (2017): Effects of sad and happy music on mind-wandering and the default mode network, Scientific Reports, 7 (1), S. 14396.
58
Howren, M. B., Lamkin, D. M., & Suls, J. (2009): Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis, Psychosomatic Medicine, 71 (2), S. 171–186.
59
Chida, Y., & Steptoe, A. (2009): The association of anger and hostility with future coronary heart disease: a meta-analytic review of prospective evidence, Journal of the American College of Cardiology, 53 (11), S. 936–946.
60
Kiecolt-Glaser, J. K., McGuire, L., Robles, T. F., & Glaser, R. (2002): Emotions, morbidity, and mortality: new perspectives from psychoneuroimmunology, Annual Review of Psychology, 53 (1), S. 83–107.
61
Fritz, C., Curtin, J., Poitevineau, J., Morrel-Samuels, P., & Tao, F. C. (2012): Player preferences among new and old violins, Proceedings of the National Academy of Sciences, 109 (3), S. 760–763.
62
Plassmann, H., O’Doherty, J., Shiv, B., & Rangel, A. (2008): Marketing actions can modulate neural representations of experienced pleasantness, Proceedings of the National Academy of Sciences, 105 (3), S. 1050–1054.
63
Sven Oliver Müller (2014): Das Publikum macht die Musik. Musikleben in Berlin, London und Wien im 19. Jahrhundert, Göttingen, Vandenhoeck & Ruprecht.
64
Lundqvist, L. O., Carlsson, F., Hilmersson, P., & Juslin, P. N. (2009): Emotional responses to music: Experience, expression, and physiology, Psychology of Music, 37 (1), S. 61–90.
65
ABC News, 7. Sept. 2006. Exclusive: Mother of Tears in Heaven Inspiration Shares Story (abcnews.go.com/2020/Entertainment/story?id = 2404474&page = 1).
66
Klimecki, O. M., Leiberg, S., Lamm, C., & Singer, T. (2012): Functional neural plasticity and associated changes in positive affect after compassion training, Cerebral Cortex, 23 (7), S. 1552–1561.
67
Schellenberg, E. G. (2006): Long-term positive associations between music lessons and IQ, Journal of Educational Psychology, 98 (2), S. 457; Schellenberg, E. G., Corrigall, K. A., Dys, S. P., & Malti, T. (2015): Group music training and children’s prosocial skills, PLoS One, 10 (10), e0141449.
68
Page, K. M., & Nowak, M. A. (2002): Empathy leads to fairness, Bulletin of Mathematical Biology, 64 (6), S. 1101–1116; Rumble, A. C., Van Lange, P. A., & Parks, C. D. (2010): The benefits of empathy: When empathy may sustain cooperation in social dilemmas, European Journal of Social Psychology, 40 (5), S. 856–866.
69
Taruffi, L., Pehrs, C., Skouras, S., & Koelsch, S. (2017): Effects of sad and happy music on mind-wandering and the default mode network, Scientific Reports, 7 (1), S. 14396.
70
Williams, J., Stönner, C., Wicker, J., Krauter, N., Derstroff, B., Bourtsoukidis, E., ... & Kramer, S. (2016): Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath, Scientific Reports, 6, S. 25464.
71
New York Times от 10.02.2018 (www.nytimes.com/2018/02/10/opinion/sunday/favorite-songs.html).
72
Galvan, A. (2010): Adolescent development of the reward system, Frontiers in Human Neuroscience, 4, S. 6.
73
Finke, C., Esfahani, N. E., & Ploner, C. J. (2012): Preservation of musical memory in an amnesic professional cellist, Current Biology, 22 (15), R591–R592.
74
Kashino, M. (2006): Phonemic restoration: The brain creates missing speech sounds, Acoustical Science and Technology, 27(6), S. 318–321.
75
Witek, M. A., Clarke, E. F., Wallentin, M., Kringelbach, M. L., & Vuust, P. (2014): Syncopation, body-movement and pleasure in groove music, PLoS One, 9 (4), e94446.
76
Koelsch, S., Kilches, S., Steinbeis, N., & Schelinski, S. (2008): Effects of unexpected chords and of performer’s expression on brain responses and electrodermal activity, PLoS One, 3 (7), e2631.
77
Steinbeis, N., Koelsch, S., & Sloboda, J. A. (2006): The role of harmonic expectancy violations in musical emotions: Evidence from subjective, physiological, and neural responses, Journal of Cognitive Neuroscience, 18 (8), S. 1380–1393.
78
Lehne, M., Rohrmeier, M., Gollmann, D., & Koelsch, S. (2013): The influence of different structural features on felt musical tension in two piano pieces by Mozart and Mendelssohn, Music Perception: An Interdisciplinary Journal, 31 (2), S. 171–185.
79
Lehne, M., Rohrmeier, M., & Koelsch, S. (2013): Tension-related activity in the orbitofrontal cortex and amygdala: an fMRI study with music, Social Cognitive and Affective Neuroscience, 9 (10), S. 1515–1523.
80
Mears, D., & Pollard, H. B. (2016): Network science and the human brain: using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease, Journal of Neuroscience Research, 94 (6), S. 590–605.
81
Taruffi, L., Pehrs, C., Skouras, S., & Koelsch, S. (2017): Effects of sad and happy music on mind-wandering and the default mode network, Scientific Reports, 7 (1), S. 14396.
82
Koelsch, S., Bashevkin, T., Kristensen, J., Tvedt, J., & Jentschke, S.: Heroic music stimulates empowering thoughts during mind-wandering. Рукопись, предложенная к изданию.
83
Holt-Lunstad, J., Robles, T. F., & Sbarra, D. A. (2017): Advancing social connection as a public health priority in the United States, American Psychologist, 72 (6), S. 517.
84
Gallace, A., & Spence, C. (2010): The science of interpersonal touch: an overview, Neuroscience & Biobehavioral Reviews, 34 (2), S. 246–259.
85
Steinbeis, N., & Koelsch, S. (2008): Understanding the intentions behind man-made products elicits neural activity in areas dedicated to mental state attribution, Cerebral Cortex, 19 (3), S. 619–623.
86
Page, K. M., & Nowak, M. A. (2002): Empathy leads to fairness, Bulletin of Mathematical Biology, 64 (6), S. 1101–1116; Rumble, A. C., Van Lange, P. A., & Parks, C. D. (2010): The benefits of empathy: When empathy may sustain cooperation in social dilemmas, European Journal of Social Psychology, 40 (5), S. 856–866.
87
Tarr, B., Launay, J., & Dunbar, R. I. (2014): Music and social bonding: self-other merging and neurohormonal mechanisms, Frontiers in Psychology, 5, S. 1096.
88
Wiltermuth, S. S., & Heath, C. (2009): Synchrony and cooperation, Psychological Science, 20 (1), 1–5; Launay, J., Dean, R. T., & Bailes, F. (2013): Synchronization can influence trust following virtual interaction, Experimental psychology, 60, S. 53–63.
89
Wiltermuth, S. S. (2012): Synchronous activity boosts compliance with requests to aggress, Journal of Experimental Social Psychology, 48 (1), S. 453–456.
90
Rilling, J. K., Gutman, D. A., Zeh, T. R., Pagnoni, G., Berns, G. S., & Kilts, C. D. (2002): A neural basis for social cooperation, Neuron, 35 (2), S. 395–405.
91
Nowak, M. A. (2006): Five rules for the evolution of cooperation, Science, 314 (5805), S. 1560–1563.
92
Koelsch, S., & Jäncke, L. (2015): Music and the heart, European Heart Journal, 36 (44), 3043–3049.
93
Krabs, R. U., Enk, R., Teich, N., & Koelsch, S. (2015): Autonomic effects of music in health and Crohn’s disease: the impact of isochronicity, emotional valence, and tempo, PLoS One, 10 (5), e0126224; Orini, M., Bailón, R., Enk, R., Koelsch, S., Mainardi, L., & Laguna, P. (2010): A method for continuously assessing the autonomic response to music-induced emotions through HRV analysis, Medical & Biological Engineering & Computing, 48 (5), S. 423–433.
94
Koelsch, S., & Stegemann, T. (2012): The brain and positive biological effects in healthy and clinical populations, in: MacDonald, R., Kreutz, G., & Mitchell, L. (Hg.): Music, Health, and Wellbeing, Oxford University Press, S. 436–456).
95
Koelsch, S., & Skouras, S. (2014): Functional centrality of amygdala, striatum and hypothalamus in a ›smallworld‹ network underlying joy: An fMRI study with music, Human Brain Mapping, 35 (7), S. 3485–3498.
96
Koelsch, S., & Stegemann, T. (2012): The brain and positive biological effects in healthy and clinical populations, in: MacDonald, R., Kreutz, G., & Mitchell, L. (Hg.): Music, Health, and Wellbeing, Oxford University Press, S. 436–456).
97
Kreutz, G., Bongard, S., Rohrmann, S., Hodapp, V., & Grebe, D. (2004): Effects of choir singing or listening on secretory immunoglobulin A, cortisol, and emotional state, Journal of Behavioral Medicine, 27 (6), S. 623–635.
98
Koelsch, S., Boehlig, A., Hohenadel, M., Nitsche, I., Bauer, K., & Sack, U. (2016): The impact of acute stress on hormones and cytokines, and how their recovery is affected by music-evoked positive mood, Scientific Reports, 6, S. 23008.
99
Kam-Hansen, S., Jakubowski, M., Kelley, J. M., Kirsch, I., Hoaglin, D. C., Kaptchuk, T. J., & Burstein, R. (2014): Altered placebo and drug labeling changes the outcome of episodic migraine attacks, Science Translational Medicine, 6 (218), 218ra5–218ra5.
100
Price, D. D., Finniss, D. G., & Benedetti, F. (2008): A comprehensive review of the placebo effect: recent advances and current thought, Annual Review of Psychology, 59, S. 565–590.
101
Moseley, J. B., O’Malley, K., Petersen, N. J., Menke, T. J., Brody, B. A., Kuykendall, D. H., ... & Wray, N. P. (2002): A controlled trial of arthroscopic surgery for osteoarthritis of the knee, New England Journal of Medicine, 347 (2), S. 81–88.
102
Wartolowska, K., Judge, A., Hopewell, S., Collins, G. S., Dean, B. J., Rombach, I., ... & Carr, A. J. (2014): Use of placebo controls in the evaluation of surgery: systematic review, Bmj, 348, g3253.
103
Kirsch, I. (2014): Antidepressants and the placebo effect, Zeitschrift für Psychologie, 222 (3), S. 128.
104
Cannon, W. B. (1942): Voodoo death, American Anthropologist, 44 (2), S. 169–181.
105
Leach, J. (2018): Give-up-itis revisited: Neuropathology of extremis, Medical Hypotheses, 120, S. 14–21.
106
Di Blasi, Z., Harkness, E., Ernst, E., Georgiou, A., & Kleijnen, J. (2001): Influence of context effects on health outcomes: a systematic review, The Lancet, 357 (9258), S. 757–762; Stewart, M. A. (1995): Effective physician-patient communication and health outcomes: a review, CMAJ: Canadian Medical Association Journal, 152 (9), S. 1423.
107
Rogenmoser, L., Kernbach, J., Schlaug, G., & Gaser, C. (2018): Keeping brains young with making music, Brain Structure and Function, 223 (1), S. 297–305.
108
Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., ... & Lipps, D. B. (2010): Motor control and aging: links to age-related brain structural, functional, and biochemical effects, Neuroscience & Biobehavioral Reviews, 34 (5), S. 721–733.
109
Kraus, N., & Strait, D. L. (2015): Emergence of biological markers of musicianship with school-based music instruction, Annals of the New York Academy of Sciences, 1337 (1), S. 163–169.
110
Parbery-Clark, A., Strait, D. L., Anderson, S., Hittner, E., & Kraus, N. (2011): Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise, PLoS One, 6 (5), e18082; Zendel, B. R., & Alain, C. (2012): Musicians experience less age-related decline in central auditory processing, Psychology and Aging, 27 (2), S. 410.
111
Khalsa, S. S., Adolphs, R., Cameron, O. G., Critchley, H. D., Davenport, P. W., Feinstein, J. S., ... & Meuret, A. E. (2018): Interoception and mental health: a roadmap, Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3 (6), S. 501–503.
112
Rickson, D. J. (2006): Instructional and improvisational models of music therapy with adolescents who have attention deficit hyperactivity disorder (ADHD): A comparison of the effects on motor impulsivity, Journal of Music Therapy, 43 (1), S. 39–62.
113
Sallat, S., & Jentschke, S. (2015): Music perception influences language acquisition: melodic and rhythmic- melodic perception in children with specific language impairment, Behavioural Neurology, 2015; Franklin, M. S., Sledge Moore, K., Yip, C. Y., Jonides, J., Rattray, K., & Moher, J. (2008): The effects of musical training on verbal memory, Psychology of Music, 36 (3), S. 353–365.
114
Schellenberg, E. G. (2006): Long-term positive associations between music lessons and IQ, Journal of Educational Psychology, 98 (2), S. 457; Schellenberg, E. G., Corrigall, K. A., Dys, S. P., & Malti, T. (2015): Group music training and children’s prosocial skills, PLoS One, 10 (10), e0141449.
115
Koelsch, S., Offermanns, K., & Franzke, P. (2010): Music in the treatment of affective disorders: an exploratory investigation of a new method for music-therapeutic research, Music Perception: An Interdisciplinary Journal, 27(4), S. 307–316.
116
Kiecolt-Glaser, J. K., McGuire, L., Robles, T. F., & Glaser, R. (2002): Emotions, morbidity, and mortality: new perspectives from psychoneuroimmunology, Annual Review of Psychology, 53 (1), S. 83–107.
117
Шуточный свод правил, состоящий из 11-ти прописных истин и житейских мудростей. — Прим. пер.
118
Koelsch, S., Jacobs, A. M., Menninghaus, W., Liebal, K., Klann-Delius, G., von Scheve, C., & Gebauer, G. (2015): The quartet theory of human emotions: an integrative and neurofunctional model, Physics of Life Reviews, 13, S. 1–27; Koelsch, S., Jacobs, A. M., Menninghaus, W., Liebal, K., Klann-Delius, G., von Schewe, C., & Gebauer, G. (2013): Ein neurofunktionales Modell von Emotionen. Enzyklopädie der Psychologie/Themenbereich C: Theorie und Forschung, Serie II: Kognition, Bd. V: Affektive und Kognitive Neurowissenschaft, S. 307–342.
119
Todd, N. P., Paillard, A. C., Kluk, K., Whittle, E., & Colebatch, J. G. (2014): Vestibular receptors contribute to cortical auditory evoked potentials, Hearing Research, 309, S. 63–74.
120
Clark, I. N., Baker, F. A., & Taylor, N. F. (2016): The modulating effects of music listening on health-related exercise and physical activity in adults: a systematic review and narrative synthesis, Nordic Journal of Music Therapy, 25 (1), S. 76–104.
121
Fritz, T. H., Hardikar, S., Demoucron, M., Niessen, M., Demey, M., Giot, O., ... & Leman, M. (2013): Musical agency reduces perceived exertion during strenuous physical performance, Proceedings of the National Academy of Sciences, 110 (44), S. 17784–17789; Fritz, T. H., Bowling, D. L., Contier, O., Grant, J., Schneider, L., Lederer, A., ... & Villringer, A. (2018): Musical agency during physical exercise decreases pain, Frontiers in Psychology, 8, S. 2312.
122
Pelletier, C. L. (2004): The effect of music on decreasing arousal due to stress: A meta-analysis, Journal of Music Therapy, 41 (3), S. 192–214.
123
Grewe, O., Kopiez, R., & Altenmüller, E. (2009): The chill parameter: Goose bumps and shivers as promising measures in emotion research, Music Perception: An Interdisciplinary Journal, 27 (1), S. 61–74.
124
Panksepp, J. (1995): The emotional sources of chills induced by music, Music perception: An Interdisciplinary Journal, 13 (2), S. 171–207. См. также предыдущее примечание.
125
Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A., & Marco-Pallarés, J. (2014): Dissociation between musical and monetary reward responses in specific musical anhedonia, Current Biology, 24 (6), S. 699–704.
126
Blood, A. J., & Zatorre, R. J. (2001): Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion, Proceedings of the National Academy of Sciences, 98 (20), S. 11818–11823.
127
Di Chiara, G., Bassareo, V., Fenu, S., De Luca, M. A., Spina, L., Cadoni, C., ... & Lecca, D. (2004): Dopamine and drug addiction: the nucleus accumbens shell connection, Neuropharmacology, 47, S. 227–241; Holstege, G., Georgiadis, J. R., Paans, A. M., Meiners, L. C., van der Graaf, F. H., & Reinders, A. S. (2003): Brain activation during human male ejaculation, Journal of Neuroscience, 23 (27), S. 9185–9193.
128
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011): Anatomically distinct dopamine release during anticipation and experience of peak emotion to music, Nature Neuroscience, 14 (2), S. 257.
129
Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., ... & Lipps, D. B. (2010): Motor control and aging: links to age-related brain structural, functional, and biochemical effects, Neuroscience & Biobehavioral Reviews, 34 (5), S. 721–733.
130
Koelsch, S. (2014): Brain correlates of music-evoked emotions, Nature Reviews Neuroscience, 15 (3), S. 170.
131
Sescousse, G., Caldú, X., Segura, B., & Dreher, J. C. (2013): Processing of primary and secondary rewards: a quantitative metaanalysis and review of human functional neuroimaging studies, Neuroscience & Biobehavioral Reviews, 37 (4), S. 681–696.
132
Spintge, R. (2015): Musikmedizinische Interventionen in der klinischen Medizin bei Schmerz, Angst und Stress, in: Bernatzky, G., Kreutz, G. (Hg.): Musik und Medizin, Springer, S. 71–83.
133
Cepeda, M. S., Carr, D. B., Lau, J., & Alvarez, H. (2006): Music for pain relief, Cochrane Database of Systematic Reviews, (2), S. 1–45.
134
Koelsch, S., Fuermetz, J., Sack, U., Bauer, K., Hohenadel, M., Wiegel, M., ... & Heinke, W. (2011): Effects of music listening on cortisol levels and propofol consumption during spinal anesthesia, Frontiers in Psychology, 2, S. 58.
135
Klassen, J. A., Liang, Y., Tjosvold, L., Klassen, T. P., & Hartling, L. (2008): Music for pain and anxiety in children undergoing medical procedures: a systematic review of randomized controlled trials, Ambulatory Pediatrics, 8 (2), S. 117–128.
136
Cavaco, S., Feinstein, J. S., van Twillert, H., & Tranel, D. (2012): Musical memory in a patient with severe anterograde amnesia, Journal of Clinical and Experimental Neuropsychology, 34 (10), S. 1089–1100.
137
Galea, L. A., Leuner, B., & Slattery, D. A. (2014): Hippocampal plasticity during the peripartum period: influence of sex steroids, stress and ageing, Journal of Neuroendocrinology, 26 (10), S. 641–648.
138
Strange, B. A., Witter, M. P., Lein, E. S., & Moser, E. I. (2014): Functional organization of the hippocampal longitudinal axis, Nature Reviews Neuroscience, 15 (10), S. 655.
139
Heinrichs, M., & Domes, G. (2008): Neuropeptides and social behaviour: effects of oxytocin and vasopressin in humans, Progress in Brain Research, 170, S. 337–350.
140
Leuner, B., Glasper, E. R., & Gould, E. (2010): Parenting and plasticity, Trends in Neurosciences, 33 (10), S. 465–473.
141
Lathe, R. (2001): Hormones and the hippocampus, Journal of Endocrinology, 169 (2), S. 205–231.
142
Panksepp, J., Herman, B. H., Vilberg, T., Bishop, P., & DeEskinazi, F. G. (1980): Endogenous opioids and social behavior, Neuroscience & Biobehavioral Reviews, 4 (4), S. 473–487.
143
Smith, M. E. (2005): »Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: A meta-analysis of structural MRI studies, Hippocampus, 15 (6), S. 798–807; Kitayama, N., Vaccarino, V., Kutner, M., Weiss, P., & Bremner, J. D. (2005): Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis, Journal of Affective Disorders, 88 (1), S. 79–86.
144
Haijma, S. V., Van Haren, N., Cahn, W., Koolschijn, P. C. M., Hulshoff Pol, H. E., & Kahn, R. S. (2012): Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects, Schizophrenia Bulletin, 39 (5), S. 1129–1138; Nunes, P. M., Wenzel, A., Borges, K. T., Porto, C. R., Caminha, R. M., & de Oliveira, I. R. (2009): Volumes of the hippocampus and amygdala in patients with borderline personality disorder: a meta-analysis, Journal of Personality Disorders, 23 (4), S. 333–345.
145
Koolschijn, P. C. M., van Haren, N. E., Lensvelt-Mulders, G. J., Hulshoff Pol, H. E., & Kahn, R. S. (2009): Brain volume abnormalities in major depressive disorder: A meta-analysis of magnetic resonance imaging studies, Human Brain Mapping, 30 (11), S. 3719–3735.
146
Diener, C., Kuehner, C., Brusniak, W., Ubl, B., Wessa, M., & Flor, H. (2012): A meta-analysis of neurofunctional imaging studies of emotion and cognition in major depression, Neuroimage, 61 (3), S. 677–685; Groenewold, N. A., Opmeer, E. M., de Jonge, P., Aleman, A., & Costafreda, S. G. (2013): Emotional valence modulates brain functional abnormalities in depression: evidence from a meta-analysis of fMRI studies, Neuroscience & Biobehavioral Reviews, 37 (2), S. 152–163.
147
Аgostini, A., Filippini, N., Cevolani, D., Agati, R., Leoni, C., Tambasco, R., ... & Leonardi, M. (2010): Brain functional changes in patients with ulcerative colitis: a functional magnetic resonance imaging study on emotional processing, Inflammatory Bowel Diseases, 17 (8), S. 1769–1777.
148
Agostini, A., Filippini, N., Benuzzi, F., Bertani, A., Scarcelli, A., Leoni, C., ... & Rizzello, F. (2013): Functional magnetic resonance imaging study reveals differences in the habituation to psychological stress in patients with Crohn’s disease versus healthy controls, Journal of Behavioral Medicine, 36 (5), S. 477–487; Agostini, A., Benuzzi, F., Filippini, N., Bertani, A., Scarcelli, A., Farinelli, V., ... & Ercolani, M. (2013): New insights into the brain involvement in patients with Crohn’s disease: a voxel-based morphometry study, Neurogastroenterology & Motility, 25 (2), S. 147–e82.
149
James, R., Sigafoos, J., Green, V. A., Lancioni, G. E., O’Reilly, M. F., Lang, R., ... & Marschik, P. B. (2015): Music therapy for individuals with autism spectrum disorder: A systematic review, Review Journal of Autism and Developmental Disorders, 2 (1), S. 39–54; Mössler, K., Chen, X., Heldal, T. O., & Gold, C. (2011): Music therapy for people with schizophrenia and schizophrenia-like disorders, The Cochrane Library; Aalbers, S., Fusar–Poli, L., Freeman, R. E., Spreen, M., Ket, J. C., Vink, A. C., ... & Gold, C. (2017): Music Therapy for Depression, The Cochrane Library.
150
Kraus, K. S., & Canlon, B. (2012): Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus, Hearing Research, 288 (1–2), S. 34–46.
151
Siebel, W. A. (1995): Umgang: Einführung in eine psychologische Erkenntnistheorie, Glaser.
152
Sven Oliver Müller (2014): Das Publikum macht die Musik. Musikleben in Berlin, London und Wien im 19. Jahrhundert, Göttingen, Vandenhoeck & Ruprecht.
153
Weiss, J. (1993): How psychotherapy works: Process and technique, Guilford Press.
154
Killingsworth, M. A., & Gilbert, D. T. (2010): A wandering mind is an unhappy mind, Science, 330 (6006), S. 932–932.
155
Reiche, E. M. V., Morimoto, H. K., & Nunes, S. M. V. (2005): Stress and depression-induced immune dysfunction: implications for the development and progression of cancer, International Review of Psychiatry, 17 (6), S. 515–527.
156
Taruffi, L., Pehrs, C., Skouras, S., & Koelsch, S. (2017): Effects of sad and happy music on mind-wandering and the default mode network, Scientific Reports, 7 (1), S. 14396.
157
Lehmann, C., Welker, L., & Schiefenhövel, U. W. (2008): Der Singstreit in humanethologischer Perspektive, Musicae Scientiae, 12 (1), S. 115–145.
158
Gebauer, G., Holodynski, M., Koelsch, S., & von Scheve, C. (2017): Von der Emotion zur Sprache, Velbrück Wissenschaft.
159
Head, H., & Holmes, G. (1911): Sensory disturbances from cerebral lesions, Brain, 34 (2–3), S. 102–254.
160
Khalsa, S. S., Adolphs, R., Cameron, O. G., Critchley, H. D., Davenport, P. W., Feinstein, J. S., ... & Meuret, A. E. (2018): Interoception and mental health: a roadmap, Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 3 (6), S. 501–513.
161
Gebauer, G., Holodynski, M., Koelsch, S., & von Scheve, C. (2017): Von der Emotion zur Sprache, Velbrück Wissenschaft.
162
Allen, R., & Heaton, P. (2010): Autism, music, and the therapeutic potential of music in alexithymia, Music Perception: An Interdisciplinary Journal, 27 (4), S. 251–261.
163
Särkämö, T., Tervaniemi, M., Laitinen, S., Forsblom, A., Soinila, S., Mikkonen, M., ... & Peretz, I. (2008): Music listening enhances cognitive recovery and mood after middle cerebral artery stroke, Brain, 131 (3), S. 866–876.362.
164
Särkämö, T., Ripollés, P., Vepsäläinen, H., Autti, T., Silvennoinen, H. M., Salli, E., ... & Rodríguez-Fornells, A. (2014): Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study, Frontiers in Human Neuroscience, 8, S. 245.
165
Särkämö, T., Tervaniemi, M., Soinila, S., Autti, T., Silvennoinen, H. M., Laine, M., ... & Pihko, E. (2010): Auditory and cognitive deficits associated with acquired amusia after stroke: a magnetoencephalography and neuropsychological follow-up study, PLoS One, 5 (12), e15157.
166
Van der Meulen, I., van de Sandt-Koenderman, W. M. E., Heijenbrok-Kal, M. H., Visch-Brink, E. G., & Ribbers, G. M. (2014): The efficacy and timing of melodic intonation therapy in subacute aphasia. Neurorehabilitation and Neural Repair, 28 (6), S. 536–544; Merrett, D. L., Peretz, I., & Wilson, S. J. (2014): Neurobiological, cognitive, and emotional mechanisms in melodic intonation therapy, Frontiers in Human Neuroscience, 8, S. 401.
167
Schlaug, G., Marchina, S., & Norton, A. (2009): Evidence for plasticity in white-matter tracts of patients with chronic Broca’s aphasia undergoing intense intonation-based speech therapy, Annals of the New York Academy of Sciences, 1169 (1), S. 385–394.
168
Wan, C. Y., Zheng, X., Marchina, S., Norton, A., & Schlaug, G. (2014): Intensive therapy induces contralateral white matter changes in chronic stroke patients with Broca’s aphasia, Brain and Language, 136, S. 1–7.
169
Halwani, G. F., Loui, P., Rueber, T., & Schlaug, G. (2011): Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians, Frontiers in Psychology, 2, S. 156.
170
Thaut, M.H., Leins, A.K., Rice, R.R. et al. (2007): Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial, Neurorehabilitation Neural Repair, 21, S. 455–459.
171
Thaut, M.H., McIntosh, G.C., Rice, R.R (1997): Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation, Journal of Neurological Sciences, 151, S. 207–212.
172
Moumdjian, L., Sarkamo, T., Leone, C., Leman, M., & Feys, P. (2017): Effectiveness of music-based interventions on motricity or cognitive functioning in neurological populations: a systematic review, European Journal of Physical and Rehabilitation Medicine, 53 (3), S. 466–482.
173
Cha, Y., Kim, Y., Hwang, S., Chung, Y. (2004): Intensive gait training with rhythmic auditory stimulation in individuals with chronic hemiparetic stroke: a pilot randomized controlled study, NeuroRehabilitation, 35, S. 681–688.
174
Jeong, S., Kim, M.T (2007): Effects of a theory-driven music and movement program for stroke survivors in a community setting, Applied Nursing Research, 20, S. 125–131.
175
Schneider, S., Schönle, P. W., Altenmüller, E., & Münte, T. F. (2007): Using musical instruments to improve motor skill recovery following a stroke, Journal of Neurology, 254 (10), S. 1339–1346.
176
Schneider, S., Münte, T., Rodriguez-Fornells, A., Sailer, M., & Altenmüller, E. (2010): Music-supported training is more efficient than functional motor training for recovery of fine motor skills in stroke patients, Music Perception: An Interdisciplinary Journal, 27 (4), S. 271–280.
177
Veerbeek, J. M., van Wegen, E., van Peppen, R., van der Wees, P. J., Hendriks, E., Rietberg, M., & Kwakkel, G. (2014): What is the evidence for physical therapy poststroke? A systematic review and meta-analysis, PLoS One, 9 (2), e87987; Peurala, S. H., Kantanen, M. P., Sjögren, T., Paltamaa, J., Karhula, M., & Heinonen, A. (2012): Effectiveness of constraint-induced movement therapy on activity and participation after stroke: a systematic review and meta-analysis of randomized controlled trials, Clinical Rehabilitation, 26 (3), S. 209–223.
178
Whitall, J., Waller, S. M., Sorkin, J. D. et al. (2011): Bilateral and unilateral arm training improve motor function through differing neuroplastic mechanisms: a single-blinded randomized controlled trial, Neurorehabilitation Neural Repair, 25, S. 118–129.
179
Cuddy, L. L., & Duffin, J. (2005): Music, memory, and Alzheimer’s disease: is music recognition spared in dementia, and how can it be assessed?, Medical Hypotheses, 64 (2), S. 229–235.
180
Cuddy, L. L., Duffin, J. M., Gill, S. S., Brown, C. L., Sikka, R., & Vanstone, A. D. (2012): Memory for melodies and lyrics in Alzheimer’s disease, Music Perception: An Interdisciplinary Journal, 29 (5), S. 479–491.
181
Vanstone, A. D., & Cuddy, L. L. (2009): Musical memory in Alzheimer disease, Aging, Neuropsychology, and Cognition, 17 (1), S. 108–128.
182
Moussard, A., Bigand, E., Belleville, S., & Peretz, I. (2014): Learning sung lyrics aids retention in normal ageing and Alzheimer’s disease, Neuropsychological Rehabilitation, 24 (6), S. 894–917.
183
El Haj, M., Antoine, P., Nandrino, J. L., Gély-Nargeot, M. C., & Raffard, S. (2015): Self-defining memories during exposure to music in Alzheimer’s disease, International Psychogeriatrics, 27 (10), S. 1719–1730.
184
El Haj, M., Fasotti, L., & Allain, P. (2012): The involuntary nature of music-evoked autobiographical memories in Alzheimer’s disease, Consciousness and Cognition, 21 (1), S. 238–246.
185
Jacobsen, J. H., Stelzer, J., Fritz, T. H., Chételat, G., La Joie, R., & Turner, R. (2015): Why musical memory can be preserved in advanced Alzheimer’s disease, Brain, 138 (8), S. 2438–2450.
186
Goris, E. D., Ansel, K. N., & Schutte, D. L. (2016): »Quantitative systematic review of the effects of non-pharmacological interventions on reducing apathy in persons with dementia«, Journal of Advanced Nursing, 72 (11), S. 2612–2628; Cammisuli, D. M., Danti, S., Bosinelli, F., & Cipriani, G. (2016): Non-pharmacological interventions for people with Alzheimer’s disease: a critical review of the scientific literature from the last ten years, European Geriatric Medicine, 7 (1), S. 57–64.
187
Fang, R., Ye, S., Huangfu, J., & Calimag, D. P. (2017): Music therapy is a potential intervention for cognition of Alzheimer’s Disease: a mini-review, Translational Neurodegeneration, 6 (1), S. 2; Peck, K. J., Girard, T. A., Russo, F. A., & Fiocco, A. J. (2016): Music and memory in Alzheimer’s disease and the potential underlying mechanisms, Journal of Alzheimer’s Disease, 51 (4), S. 949–959.
188
Fang, R., Ye, S., Huangfu, J., & Calimag, D. P. (2017): Music therapy is a potential intervention for cognition of Alzheimer’s Disease: a mini-review, Translational Neurodegeneration, 6 (1), S. 2.
189
Brett, L., Traynor, V., & Stapley, P. (2016): Effects of physical exercise on health and well-being of individuals living with a dementia in nursing homes: a systematic review, Journal of the American Medical Directors Association, 17 (2), S. 104–116.
190
McIntosh, G. C., Brown, S. H., Rice, R. R., & Thaut, M. H. (1997): Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease, Journal of Neurology, Neurosurgery & Psychiatry, 62 (1), S. 22–26.
191
Arias, P., & Cudeiro, J. (2010): Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and without freezing of gait, PLoS One, 5 (3), e9675.
192
Thaut, M. H., McIntosh, G. C., Rice, R. R., Miller, R. A., Rathbun, J., & Brault, J. M. (1996): Rhythmic auditory stimulation in gait training for Parkinson’s disease patients, Movement Disorders: Official Journal of the Movement Disorder Society, 11 (2), S. 193–200.
193
Spaulding, S. J., Barber, B., Colby, M., Cormack, B., Mick, T., & Jenkins, M. E. (2013): Cueing and gait improvement among people with Parkinson’s disease: a meta-analysis, Archives of Physical Medicine and Rehabilitation, 94 (3), S. 562–570.
194
Ghai, S., Ghai, I., Schmitz, G., & Effenberg, A. O. (2018): Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis, Scientific Reports, 8 (1), S. 506.
195
Allman, M. J., & Meck, W. H. (2011): Pathophysiological distortions in time perception and timed performance, Brain, 135 (3), S. 656–677.
196
Grahn, J. A., & Brett, M. (2007): Rhythm and beat perception in motor areas of the brain, Journal of Cognitive Neuroscience, 19 (5), S. 893–906.
197
Benoit, C. E., Dalla Bella, S., Farrugia, N., Obrig, H., Mainka, S., & Kotz, S. A. (2014): Musically cued gait-training improves both perceptual and motor timing in Parkinson’s disease, Frontiers in Human Neuroscience, 8, S. 494.
198
Ueda, T., Suzukamo, Y., Sato, M., & Izumi, S. I. (2013): Effects of music therapy on behavioral and psychological symptoms of dementia: a systematic review and meta-analysis, Ageing Research Reviews, 12 (2), S. 628–641.
199
Hackney, M. E., & Earhart, G. M. (2009): Effects of dance on movement control in Parkinson’s disease: a comparison of Argentine tango and American ballroom, Journal of Rehabilitation Medicine, 41 (6), S. 475–481.
200
Sihvonen, A. J., Särkämö, T., Leo, V., Tervaniemi, M., Altenmüller, E., & Soinila, S. (2017): Music-based interventions in neurological rehabilitation, The Lancet Neurology, 16 (8), S. 648–660.
201
Pohl, P., Dizdar, N., & Hallert, E. (2013): The Ronnie Gardiner Rhythm and Music Method — a feasibility study in Parkinson’s disease, Disability and Rehabilitation, 35 (26), S. 2197–2204; Pacchetti, C., Mancini, F., Aglieri, R., Fundarò, C., Martignoni, E., & Nappi, G. (2000): Active music therapy in Parkinson’s disease: an integrative method for motor and emotional rehabilitation, Psychosomatic Medicine, 62 (3), S. 386–393.
202
Rehfeld, K., Müller, P., Aye, N., Schmicker, M., Dordevic, M., Kaufmann, J., ... & Müller, N. G. (2017): Dancing or fitness sport? The effects of two training programs on hippocampal plasticity and balance abilities in healthy seniors, Frontiers in Human Neuroscience, 11, S. 305.
203
Ockelford, A. (2017): Towards a developmental model of musical empathy using insights from children who are on the autism spectrum or who have learning difficulties, Music and Empathy, hg. v. Kind, E., Waddington, C., Rontledge. S. 39–88.
204
Heaton, P. (2009): Assessing musical skills in autistic children who are not savants, Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364 (1522), S. 1443–1447; De-Pape, A. M. R., Hall, G. B., Tillmann, B., & Trainor, L. J. (2012): Auditory processing in high-functioning adolescents with autism spectrum disorder, PLoS One, 7 (9), e44084.
205
Lai, G., Pantazatos, S. P., Schneider, H., & Hirsch, J. (2012): Neural systems for speech and song in autism, Brain, 135 (3), S. 961–975.
206
DePriest, J., Glushko, A., Steinhauer, K., & Koelsch, S. (2017): Language and music phrase boundary processing in Autism Spectrum Disorder: An ERP study, Scientific Reports, 7 (1), S. 14465.
207
Wan, C. Y., Bazen, L., Baars, R., Libenson, A., Zipse, L., Zuk, J., … & Schlaug, G. (2011): Auditory-motor mapping training as an intervention to facilitate speech output in non-verbal children with autism: a proof of concept study, PLoS One, 6 (9), e25505.
208
Chenausky, K., Norton, A., Tager-Flusberg, H., & Schlaug, G.(2016): Auditory-motor mapping training: comparing the effects of a novel speech treatment to a control treatment for minimally verbal children with autism, PLoS One, 11 (11), e0164930.
209
Quintin, E. M., Bhatara, A., Poissant, H., Fombonne, E., & Levitin, D. J. (2011): Emotion perception in music in high-functioning adolescents with autism spectrum disorders, Journal of Autism and Developmental Disorders, 41 (9), S. 1240–1255; Allen, R., Davis, R., & Hill, E. (2013): The effects of autism and alexithymia on physiological and verbal responsiveness to music, Journal of Autism and Developmental Disorders, 43 (2), S. 432–444.
210
Allen, R., Hill, E., & Heaton, P. (2009): Hath charms to soothe …An exploratory study of how high-functioning adults with ASD experience music, Autism, 13 (1), S. 21–41.
211
Caria, A., Venuti, P., & de Falco, S. (2011): Functional and dysfunctional brain circuits underlying emotional processing of music in autism spectrum disorders, Cerebral Cortex, 21 (12), S. 2838–2849.
212
Kim, J., Wigram, T., & Gold, C. (2009): Emotional, motivational and interpersonal responsiveness of children with autism in improvisational music therapy, Autism, 13 (4), S. 389–409.
213
Geretsegger, M., Elefant, C., Mössler, K. A., & Gold, C. (2014): Music therapy for people with autism spectrum disorder, Cochrane Database of Systematic Reviews, 6 (6), S. 1–64.
214
Koenig, J., Oelkers-Ax, R., Kaess, M., Parzer, P., Lenzen, C., Hillecke, T. K., & Resch, F. (2013): Specific music therapy techniques in the treatment of primary headache disorders in adolescents: a randomized attention-placebo- controlled trial, The Journal of Pain, 14 (10), S. 1196–1207.
215
Drogen- und Suchtbericht der Bundesregierung 2017 (www.bundesregierung.de/breg-de/service/publikationen/drogen-und-suchtbericht- 2017-730846).
216
Ahmed, S. H., Guillem, K., & Vandaele, Y. (2013): Sugar addiction: pushing the drug-sugar analogy to the limit, Current Opinion in Clinical Nutrition & Metabolic Care, 16 (4), S. 434–439.
217
Flegal, K. M., Kit, B. K., Orpana, H., & Graubard, B. I. (2013): Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis, Jama, 309 (1), S. 71–82.
218
Peeters, K., Van Leemputte, F., Fischer, B., Bonini, B. M., Quezada, H., Tsytlonok, M., ... & Janssens, V. (2017): Fructose-1, 6-bis-phosphate couples glycolytic flux to activation of Ras, Nature Communications, 8 (1), S. 922.
219
Kälin, S., Heppner, F. L., Bechmann, I., Prinz, M., Tschöp, M. H., & Yi, C. X. (2015): Hypothalamic innate immune reaction in obesity, Nature Reviews Endocrinology, 11 (6), S. 339.
220
Miller, A. A., & Spencer, S. J. (2014): Obesity and neuroinflammation: a pathway to cognitive impairment, Brain, Behavior, and Immunity, 42, S. 10–21.
221
Profenno, L. A., Porsteinsson, A. P., & Faraone, S. V. (2010): Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders, Biological Psychiatry, 67 (6), S. 505–512.
222
Hohmann, L., Bradt, J., Stegemann, T., & Koelsch, S. (2017): Effects of music therapy and music-based interventions in the treatment of substance use disorders: A systematic review, PLoS One, 12 (11), e0187363.
223
Burdakov, D., Luckman, S. M., & Verkhratsky, A. (2005): Glucose-sensing neurons of the hypothalamus, Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360 (1464), S. 2227–2235.
224
Koob, G. F. (2008): A role for brain stress systems in addiction, Neuron, 59 (1), S. 11–34.
225
Volkow, N. D., Wang, G. J., Fowler, J. S., & Tomasi, D. (2012): Addiction circuitry in the human brain, Annual Review of Pharmacology and Toxicology, 52, S. 321–336.
226
Chai, P. R., Carreiro, S., Ranney, M. L., Karanam, K., Ahtisaari, M., Edwards, R., ... & Boyer, E. W. (2017): Music as an adjunct to opioid-based analgesia, Journal of Medical Toxicology, 13 (3), S. 249–254.
227
Meier, M. H., Caspi, A., Ambler, A., Harrington, H., Houts, R.,Keefe, R. S., ... & Moffitt, T. E. (2012): Persistent cannabis users show neuropsychological decline from childhood to midlife, Proceedings of the National Academy of Sciences, 109 (40), E2657–E2664.
228
Marwaha, S., Winsper, C., Bebbington, P., & Smith, D. (2017): Cannabis use and hypomania in young people: a prospective analysis, Schizophrenia Bulletin, 44 (6), S. 1267–1274.
229
Wang, C. F., Sun, Y. L., & Zang, H. X. (2014): Music therapy improves sleep quality in acute and chronic sleep disorders: A meta-analysis of 10 randomized studies, International Journal of Nursing Studies, 51 (1), S. 51–62.
230
Garrido, S., & Schubert, E. (2013): Adaptive and maladaptive attraction to negative emotions in music, Musicae Scientiae, 17 (2), S. 147–166.
231
Garrido, S., Eerola, T., & McFerran, K. (2017): Group rumination: Social interactions around music in people with depression, Frontiers in Psychology, 8, S. 490.
232
Erkkilä, J., Punkanen, M., Fachner, J., Ala-Ruona, E., Pöntiö, I., Tervaniemi, M., ... & Gold, C. (2011): Individual music therapy for depression: randomised controlled trial, The British Journal of Psychiatry, 199 (2), S. 132–139.
233
Aalbers, S., Fusar–Poli, L., Freeman, R. E., Spreen, M., Ket, J. C., Vink, A. C., ... & Gold, C. (2017): Music Therapy for Depression, The Cochrane Library.
234
Bradt, J., Dileo, C., Magill, L., & Teague, A. (2016): Music Interventions for Improving Psychological and Physical Outcomes in Cancer Patients, The Cochrane Library.
235
Geretsegger, M., Mössler, K. A., Bieleninik, Ł., Chen, X. J., Heldal, T. O., & Gold, C. (2017): Music therapy for people with schizophrenia and schizophrenia-like disorders, Cochrane Database of Systematic Reviews (5).
В монографии представлен аналитический обзор современной литературы, отражающий основные научные подходы к изучению родственников больных с аддиктивными расстройствами. В работе описываются особенности личностного и семейного функционирования различных категорий родственников больных, страдающих героиновой наркоманией, в сопоставлении с показателями их сверстников из нормативной выборки. Нормативная группа включала практически здоровых лиц, не имеющих выраженных нарушений социальной адаптации. Среди членов семьи нормативной группы отсутствовали лица, страдающие наркотической зависимостью, выраженными нервно-психическими или тяжелыми хроническими соматическими заболеваниями. Описан характер семейной и личностной дисфункциональности родственников наркозависимых, в частности, среди показателей семейного функционирования особое внимание уделено таким, как: нарушение семейного климата и уровня организации семьи, снижение показателей семейной социокультурной ориентации.
Осознаваемое сновидение есть сновидение, в котором спящий во время сна осознает, что видит сон. В таком сновидении спящий, достигая полной ясности сознания, с абсолютной уверенностью понимает, что все зримое и ощущаемое — сон, и эта необычная убежденность дает такой уровень свободы и личной силы, который недостижим в обычном сне. Эта книга уже является классическим произведением в области изучения сновидений и, наверное, еще долго будет оставаться одним из главных руководств для тех, кто следует по пути самопознания.
Жизнь – это наша марафонская дистанция. Если терять силы на стрессах и неприятностях, то едва ли мы доживем до достойного финиша. Успешный человек отличается от неуспешного не тем, что не падает, а тем, что умеет подниматься. Мудрый от обывателя отличается не тем, что не реагирует на стрессы и неприятности, а тем, что эта реакция скорее философская, чем злобная или страдальческая. Страхи, трудные люди, обиды, неуверенность, потери были и будут всегда. Вопрос только в том, управляют они нами или мы учимся управлять ими.Эта книга о том, как приобрести эти бесценные навыки.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Название этой книги говорит само за себя — «Как стать успешной стервой, которой все завидуют». Замечали ли вы, что «серую мышку» никто никогда стервой не назовет? А если женщина, наоборот, активно борется за «место под солнцем» и за свой «кусочек счастья» — пожалуйста, готов ярлык: стерва. Может быть, это слово имеет позитивный смысл?Автор полагает, что это безусловно так. Ведь основные черты характера стервы — самостоятельность, прагматичность, высокая адаптивность и беспощадность к себе. Стерва принимает важные решения сама, не перекладывая ответственность на чужие плечи.
Тебе не позволяли хотеть самому? Ты все время жил чужой волей, и поэтому ты сейчас уже не хочешь ничего? Ты разучился хотеть? Боишься выбирать и тебе уже проще жить, как все, и тихо все это ненавидеть?.. Но есть другое предложение: начинать жить снова, потому что сегодня – это не жизнь, а жить все равно хочется, и жизнь стоит того, чтобы ее прожить полной грудью, со всей скоростью! Начинается такая жизнь непросто. Она начинается с детства, а детство – с игры в «Хочу» и «Не хочу». И протестов против того, что «Надо».Эта книга о том, как научиться видеть завтра и сделать свою жизнь радостной!