Геометрия: Планиметрия в тезисах и решениях. 9 класс - [7]
Параллелограмм – это четырёхугольник, у которого противолежащие стороны параллельны, т. е. лежат на параллельных прямых (рис. 41).
Рис. 41.
ABCD – параллелограмм, т. к. ВС||AD и АВ||CD.
Прямоугольник – это параллелограмм, у которого все углы прямые (рис. 42).
Рис. 42.
ABCD – прямоугольник, т. к. ?А = ?В = ?С = ?D = 90°.
Ромб – это параллелограмм, у которого все стороны равны (рис. 43).
Рис. 43.
ABCD – ромб, т. к. AD||ВС и АВ||DC и AB = BC = CD = AD.
Квадрат – это прямоугольник, у которого все стороны равны. Можно также сказать, что квадрат – это ромб, у которого все углы прямые (рис. 44).
Рис. 44.
ABCD – квадрат, т. к. ?А = ?В = ?С = ?D = 90° и АВ = ВС = CD = DA.
Трапецией называется четырёхугольник, у которого только две противолежащие стороны параллельны. Эти параллельные стороны называются основаниями трапеции. Две другие стороны называются боковыми сторонами (рис. 45).
Рис. 45.
ABCD и А' В' С' D' – трапеции, т. к. BC||AD, BC||AD.
Трапеция, у которой боковые стороны равны, называется раенобокой (рис. 46).
Рис. 46.
ABCD – равнобедренная трапеция (АВ = CD).
Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции (рис. 47).
Рис. 47.
EF – средняя линия трапеции ABCD: AE = EB, DF = FC.
Пусть ВА – перпендикуляр, опущенный из точки В на прямую а, и С – любая точка прямой а, отличная от А. Отрезок ВС называется наклонной, проведённой из точки В к прямой а. Точка С называется основанием наклонной. Отрезок АС называется проекцией наклонной (рис. 48).
Рис. 48.
ВА – перпендикуляр к прямой а, ВС – наклонная.
Проведём на плоскости через точку О две взаимно перпендикулярные прямые х и у – оси координат. Ось х (она обычно горизонтальная) называется осью абсцисс, а ось у – осью ординат. Точкой пересечения О – началом координат – каждая из осей разбивается на две полуоси. Условимся одну из полуосей каждой оси называть положительной, отмечая её стрелкой, а другую – отрицательной.
Каждой точке А плоскости мы сопоставим пару чисел – координаты точки – абсциссу х и ординату у по следующему правилу.
Через точку А проведём прямую, параллельную оси ординат. Она пересечёт ось абсцисс х в некоторой точке Аx. Абсциссой точки А мы будем называть число х, абсолютная величина которого равна расстоянию от точки О до точки Аx. Это число будет положительным, если Аx принадлежит положительной полуоси и отрицательным, если А принадлежит отрицательной полуоси. Если точка А лежит на оси ординат y, то полагаем х равным нулю.
Ордината j точки А определяется аналогично. Через точку А проведём прямую, параллельную оси абсцисс х. Она пересечёт ось ординату в некоторой точке Аy. Ординатой точки А мы будем называть число у, абсолютная величина которого равна расстоянию от точки О до точки Аy. Это число будет положительным, если Аy принадлежит положительной полуоси, и отрицательным, если А принадлежит отрицательной полуоси. Если точка А лежит на оси абсцисс х, то полагаем у равным нулю.
Координаты точки записывают в скобках рядом с буквенным обозначением точки, например: А(х; у) (на первом месте абсцисса, на втором – ордината) (рис. 49).
Рис. 49.
Уравнением фигуры в декартовых координатах на плоскости называется уравнение с двумя неизвестными х и у, которому удовлетворяют координаты любой точки фигуры.
Например, уравнение прямой у = kx + b, где k – тангенс угла наклона прямой к оси Ох (рис. 50).
Рис. 50.
Если каждую точку данной фигуры сместить каким-нибудь образом, то мы получим новую фигуру. Говорят, что эта фигура получена преобразованием из данной. Симметрия относительно точки, симметрия относительно прямой, поворот, параллельный перенос – виды движений.
Два отрезка называют одинаково направленными, или сонаправленными, если они совмещаются параллельным переносом.
Векторы АВ и CD называют одинаково направленными, если отрезки АВ и CD одинаково направлены. Векторы АВ и CD называют противоположно направленными, если отрезки АВ и CD противоположно направлены. Первая буква в обозначении вектора является его началом, а вторая буква – его концом. Например, у вектора АВ точка А – начало вектора, а точка В – его конец (рис. 51).
Рис. 51.
Абсолютной величиной (или модулем) вектора называется длина отрезка, изображающего вектор. Обозначают модуль вектора (на пример, АВ) следующим образом:|АВ|. Очевидно, что |AB| = AB, где АВ – это длина отрезка АВ.
Начало вектора может совпадать с его концом. Такой вектор будем называть нулевым вектором.
Два вектора называются равными, если они совмещаются параллельным переносом. Это означает, что существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого вектора (рис. 52).
Рис. 52.
Пусть вектор а имеет началом точку А1(х1; у1), а концом точку А2(х2; у2). Координатами вектора а будем называть числа a1 = x2 – x1, a2 = y2 – y1.
Суммой векторов а и b с координатами а1, а2 и BL, b2 называется вектор с с координатами a1 + BL, a2 + b2.
Разностью векторов а (a1; a2) и b (BL; b2) называется такой вектор с (с1; с2), который в сумме с вектором b даёт вектор а, т. е. b + с = а. Отсюда находим координаты вектора с = а – b: с1 = а1 – BL: с2 = а2 – b2.
В пособии представлены материалы для проведения математических олимпиад по лигам в 5 -9 классах, адаптированных к разным учебникам. Такие олимпиады сочетают увлекательность игры и спортивную соревновательность, развивают интерес к знаниям, память и внимание, активизируют общение и творческую энергию участников.Для учителей математики, педагогов-организаторов внеклассной работы в общеобразовательных школах, гимназиях и лицеях.
В пособии представлены материалы для проведения интеллектуальных марафонов – разнообразных по форме конкурсов знаний учеников 5-11 классов по всем предметам школьной программы. Завоевавшие популярность благодаря телевидению, такие конкурсы сочетают увлекательность игры и спортивную соревновательность, развивают интерес к знаниям, память и внимание, активизируют общение и творческую энергию участников.Для учителей, педагогов – организаторов внеклассной работы в общеобразовательных школах, гимназиях и лицеях.
Книга посвящена проблеме взаимосвязей отечественной и зарубежной литератур. В ней дается очерк изучения произведений русской и зарубежной литератур XIX–XX вв. в школах России, рассматриваются особенности восприятия учащимися художественных произведений, предлагаются материалы для сопоставления произведений иностранной, русской и национальных литератур России, изучаемых на уроках и факультативных занятиях.Для учителей средней школы и студентов педагогических вузов.
Предлагаемое пособие включает развернутую программу учебной дисциплины «Актуальные проблемы современной лингвистики», хрестоматию и систему заданий творческого и проблемного характера. Издание призвано обеспечить изучение цикла общелингвистических дисциплин: «Теория языка», «Общее языкознание», «Актуальные проблемы современной лингвистики», включенных в блок специальных дисциплин государственного образовательного стандарта по направлению «Филология», а также в образовательный стандарт подготовки магистров по направлениям «Филология» и «Языковое образование».Для студентов, магистрантов, аспирантов, преподавателей-филологов.6-е издание.
Легендарный питерский шахматист Генрих Чепукайтис, «заслуженный рецидивист блица», многократный чемпион Ленинграда-Петербурга и Москвы по молниеносной игре, вставал в турнирной таблице подчас выше М. Таля, В. Корчного и Т. Петросяна.Будучи одним из сильнейших блицоров мира, Генрих Михайлович свою главную идею в шахматах выразил одной фразой: «Хорошо играть совсем не обязательно, надо, чтобы партнер играл плохо!».Вы узнаете, что надо делать на висячих флажках, как сбить соперника с толку, загнать его в цейтнот и заставить ошибаться.Предваряет повествование замечательный очерк гроссмейстера и литератора Г. Сосонко «Чип», полная версия которого публикуется впервые.Новое издание книги существенно переработано и дополнено.Особенно эта книга будет интересна желающим усилить свою игру в «пятиминутках».
Четвертое издание учебника (третье вышло в 1993 г. ) состоит из двух частей — общей и частной патологической анатомии. Во всех разделах учебника приведены материалы, полученные с помощью современных методов морфологического исследования. В первой части описаны общепатологические процессы, а также представлены данные о патологии клетки, шоке, склерозе. Во второй части рассмотрена патологическая анатомия болезней, изложенная по нозологическому принципу.
Рассмотрен современный редакционно-издательский процесс и про–анализирована роль редактора на каждом из его этапов. Особое внимание уде–лено подготовке рукописи к изданию, анализу композиции и содержания произведения, редактированию нетекстовых элементов, таких как формулы, таблицы, иллюстрации. Даны характеристики аппарата книжных и жур–нальных изданий. Освещена тема взаимоотношений автора и редактора.Для студентов высших учебных заведений, получающих образование по направлениям (специальностям) «Книжное дело», «Издательское дело и редактирование», «Литературное творчество».
Непосредственной сдаче экзамена или зачета по любой учебной дисциплине всегда предшествует достаточно краткий период, когда студент должен сосредоточиться, систематизировать свои знания. Выражаясь компьютерным языком, он должен «вывести информацию из долговременной памяти в оперативную», сделать ее готовой к немедленному и эффективному использованию. Специфика периода подготовки к экзамену или зачету заключается в том, что студент уже ничего не изучает (для этого просто нет времени): он лишь вспоминает и систематизирует изученное.Содержание и структура пособия соответствуют требованиям Государственного образовательного стандарта высшего профессионального образования.Издание предназначено студентам педагогических вузов.